

MILLION SUPREME WIRES & CABLES

Index

Sr.	Contents	Page#
1.	Introduction to Million Supreme Cables	01
2.	Product Range (Cables)	02
3.	Manufacturing Process	03-04
4.	Applicable Standards	05
5.	General Wiring (Technical Manufacturing Details)	06-19
6.	Low Voltage Power Cables (Technical Manufacturing Details)	20-37
7.	Quality Control	38
8.	Installation Methods	39-45
9. I	Current Carrying Capacities & Voltage Drop	46-83
10.	Short Circuit Ratings	84-85
11.	Correction Factors	86-88
12.	Handling & Storage	89
13.	Useful Information	90-98

INTRODUCTION Million Supreme

Wires & Cables

Starting from modest organization in year 1975, Million Supreme Wires & Cables has come a long way in establishing itself as a leading cable industry. Since inception, Million Supreme Wires & Cables has been setting standards in quality & safety with all its products. Million Supreme Wires & Cables plant located at Sagyan By Pass, Lahore, is equipped with the most sophisticated manufacturing and testing equipment. Quality is the hallmark of Million Supreme Wires & Cables products, which has been sustained throughout the period.

Started by Mr. Fayyaz Ahmed as a small-scale house wiring industry, today Million Supreme Wires & Cables stands outs as one of the most reliable and recognized manufacturers of wires & cables in Pakistan.

Lead by visionary leadership, the organization realized that the growing population and power needs in Pakistan would demand more power consumption and generation. Power Cables being exponentially related to power generation, Million Supreme Wires & Cables has been continuously enhancing its product ranges, while maintaining its traditional quality.

In 1990 we Million Supreme Wires & Cables started manufacturing power cables for power and industrial infrastructure.

Continuous growth of our company shows the trust and confidence of customers on Million Supreme Wires & Cables products.

Million Supreme Wires & Cables was established on the philosophy of delivering products to the customers Just in Time (JIT) and accordingly established a vast network of dealers, the largest in its category, scattered throughout Pakistan, which still is successfully operational. Details of Million Supreme Wires & Cables dealers are available on this website. However, to cater industrial and infrastructural projects more closely, it has also developed an efficient and genial sales team which remains available to service its valued customers.

Million Supreme Wires & Cables is committed and geared-up to match the customer satisfaction by manufacturing and supplying cables & wires conforming to national and international standards. Continuous improvements through R&D cell and technological excellence with vigorous trainings of employees are the features to meet its stringent quality policy.

For further details on our group and products, please visit <u>www.millionsupremecables.com</u>.

Million Supreme Range Cables

1. General Wiring Electric Cable

0.5mm sq - 16 mm sq (Single-Core / Multi-Core) Voltage Grade 250/440V, 300/500V, 450/750V

2. Power Cable Low Voltage (Un-Armoured / Armoured)

In Thermoplastic (PVC) Insulation and Sheath

3. Power Cable Low Voltage (Un-Armoured / Armoured)

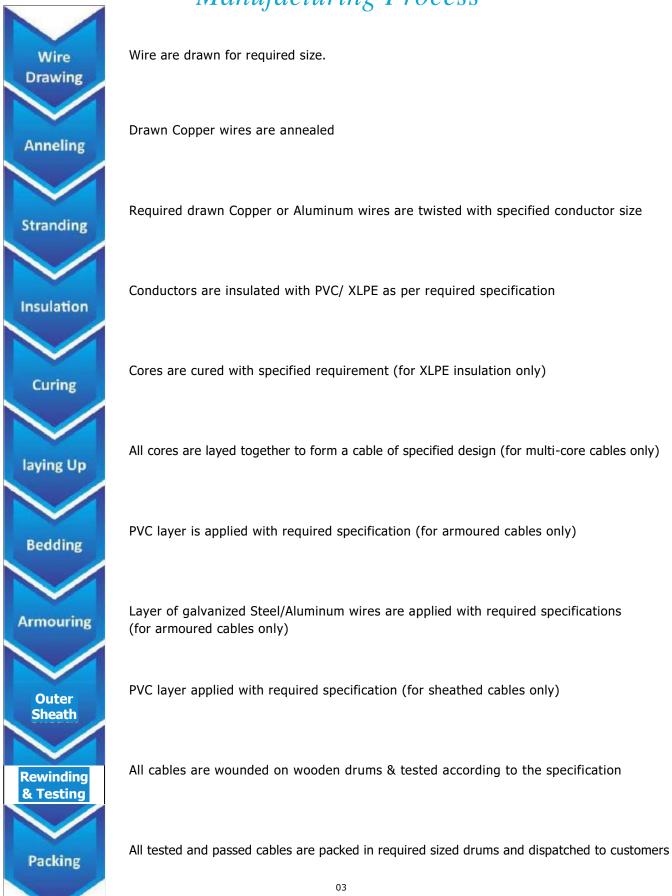
16mm sq - 1000 mm sq (Single-Core) 16mm sq - 400 mm sq (Multi-Core) Voltage Grade 600/1000V, 1900/3300 V

In Thermosetting (XLPE) Insulation and Thermoplastic (PVC) Sheath 16mm sq - 1000 mm sq (Single-Core) 16mm sq - 400 mm sq (Multi-Core) Voltage Grade 600/1000V, 1900/3300 V

A. Flexible Cable

0.25 mm sq. - 1000 mmsq (Single-Core) 0.25mm sq - 400 mm sq (Multi-Core)

- 1 Soft Drawn Bare Copper Conductor
- 2 Hard Drawn Bare Copper Conductor


Upto 50 Pairs (Conductor Size 0.61mm)

RG 7, RG 11

7. Coaxial Cables RG Type

* Manufactured Both in Copper and Aluminum Conductor

Manufacturing Process

Manufacturing of Cables

Cables with Copper and Aluminum conductor with polymer (PVC, XLPE, and PE) insulation are manufactured at MILLION SUPREME WIRES & CABLES. Essentially cables comprise of conductors and insulation, whereas bedding (inner sheath), armor and outer sheath are applied according to design requirements. The brief description of the process is mentioned as under:

CONDUCTOR DRAWING

MILLION SUPREME Cables are available with both Aluminum and Copper conductors. Conductors are manufactured in Solid/ Stranded Circular/ Shaped/Flexible Conductor/Reduced Neutral formations. Solid conductor consists of only single wire of different diameter according to size of cable.

Stranded Circular conductor consists of different number of wires, with one wire in the center contains 6 , 12 , 18 , 24 ,30 ... wire layers on it in with opposite directions.

Shaped Conductors are in compacted form in 50 or 90 degree, in all multi-core cables from 16 mm 5q, size, Onwards. All conductors for MILLION SUPREME cables are manufactured strictly in accordance with National and International standards.

INSULATION

After conductor formulation insulation is applied on conductors. MILLION SUPREME cables are available with both thermoplastic & thermo setting insulations. - PVC Cables Thermoplastic - XLPE Cables Thermosetting. Insulation for MILLION SUPREME Cables

are strictly manufactured and applied over conductor in accordance with applicable National and International specifications. Insulated conductors serve as individual "cores" for manufacturing multi-core cables.

LAYING UP

Cores are tested on line during production both for physical and electrical characteristics. For multicore cables cores are laid up on our latest laying up machine. Filler cords are also provided to maintain the circularity of laid up cables. In case of XLPE insulated cores the same are cured for cross-linking to achieve the requisite characteristics both electrical and mechanical and then are laid up.

INNER SHEATH(Bedding)

Laid up Cores are provided with inner sheath with high quality of PVC which acts as bedding for Steel wires Aluminum wires. Inner sheath is applied either with extrusion or by wrapping. The inner sheath dimensions are maintained strictly in accordance with laid down specification.

ARMOURING

Mechanical protection to the cable is provided with armoring. MILLION SUPREME single core cables are armored with Aluminum wires, thus avoiding magnetic hysteresis losses on A. C. System. Multicore cables are provided with galvanized Steel wire.

OUTER SHEATH

All MILLION SUPREME Cables are provided with PVC outer sheath In order to be identified, MILLION SUPREME Cables have their name embossed /printed/ indented on outer sheath at regular intervals throughout its length, along with voltage grade, number of cores, cable size and year of manufacturing.

Sequential cable meter marking is also available on request.

FINAL TESTING

Each MILLION SUPREME Cable is tested for all applicable Routine Tests according to standards. From a lot of cables one cable of

each type is tested for Type Tests, as per relevant specifications. Only tested and passed cable is dispatched to customers.

General Wiring

Applicable Standards

Some of the important applicable standards are:

- •BS EN 60228 / IEC 60228; Conductors of Insulated Cables
- •BS EN 50525; Low Voltage Energy Cables
- •BS 6004; Electric Cables PVC Insulated and Sheathed Cables
- •BS 6500; Electric Cables Flexible Cords rated upto 300 / 500 V
- BS 7889; Electric Cables Thermosetting Insulated, Non-armoured Cables
- BS 5467; Electric Cable Thermosetting Insulated, Armoured Cables
- IEC 60502-1; Powers Cables with extruded Insulation (Both PVC, XLPE, Cables)
- •BS 7671:2018; Requirements for Electrical Installations
- •BS EN 60811 (Multiple Parts); Common Test Methods for Insulating and sheathing materials of Electrical Cables
- ASTM B49–17; Standard Specification For Copper Rod for Electrical Purposes
- PS: IEC 60227 (Multiple Parts); PVC Insulated Cables
- •BS 6346; PVC Insulated cables for electricity supply (Upon Request)

Conductor Manufacturing Details

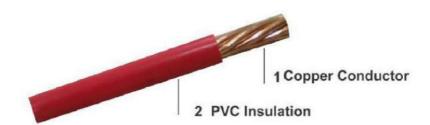
Class 1 solid conductor for single-core and multi-core cables

Nominal cross-	Maximum resistance of conductor at 20°C						
sectional area	Circular, annealed copper conductors (Plain) Ω/km	Circular, aluminium conductors Ω/km					
0.5	36.0	72°					
0.75	24.5	*					
1	18.1	~					
1.5	12.1	\\\=_{\text{\colored}}					
2.5	7.41	*					
4	4.61	*					
6	3.08	~					
10	1.83	3.08					
16	1.15	1.91					

Conductor Manufacturing Details

Class 2 stranded conductor for single-core and multi-core cables

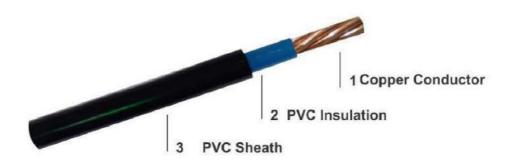
	Mini		mber of onductor	Maximum r conducto	esistance of or at 20°C	
Nominal cross-	Circ	ular	Circular Compacted		Annealed copper	Aluminum
sectional area mm²	Cu	AI	Cu	AI	conductor Plain wires Ω/km	conductor Ω/km
0.5	7	-	-	-	36.0	-
0.75	7	-	~	-	34.5	-
1.0	7	-	-	-	18.1	-
1.5	7	-	5		12.1	-
2.5	7	-	6	i=1	7.41	-
4	7	-	6	-	4.61	
6	7	-	6	-	3.08	-
10	7	7	6	6	1.83	308
16	7	7	6	6	1.15	1.91
25	7	7	6	6	0.727	1.20
35	7	7	6	6	0.524	0.868
50	19	19	6	6	0.387	0.641
70	19	19	12	12	0.268	0.443
95	19	19	15	15	0.193	0.320


Conductor Manufacturing Details

Class 5 flexible copper conductor for single-core and multi-core cables

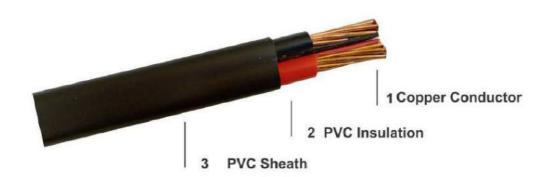
Nominal	Maximum diameter of	Maximum resistance of conductor at 20°C
cross-sectional area	wires in conductor	Plain wires
mm²	mm	Ω/km
0.5	0.21	39.0
0.75	0.21	26.0
1.0	0.21	19.5
1.5	0.26	13.3
2.5	0.26	7.98
4	0.31	4.95

Single Core PVC Insulated 450/750 Volt Cables with Copper Conductor

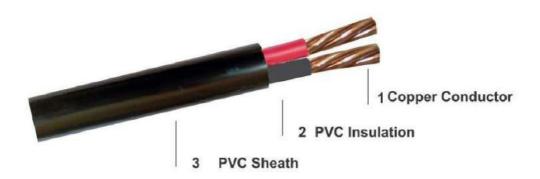


Nominal	Class of	Thickness of	Mean ove	rall diameter	Approximate
cross-sectional area of conductors	conductor (BS EN 60228)	insulation: specified value	Low limit	Upper limit	Total weight of cable
mm²		mm	mm	mm	kg/90m *
1.5	1	0.7	2.6	3.2	1.93
1.5	2	0.7	2.7	3.3	2.03
2.5	1	0.8	3.2	3.9	2.99
2.5	2	0.8	3.3	4.0	3.10
4	1	0.8	3.6	4.4	4.38
4	2	0.8	3.8	4.6	4.55
6	1	0.8	4.1	5.0	6.12
6	2	0.8	4.3	5.2	6.36
10	1	1.0	5.3	6.4	10.24
10	2	1.0	5.6	6.7	10.62
16	2 2	1.0	6.4	7.8	15.95
25	2	1.2	8.1	9.7	25.00
35	2 2	1.2	9.0	10.9	33.53
50	2	1.4	10.6	12.8	45.47
70	2	1.4	12.1	14.6	63.49
95	2	1.6	14.1	17.1	87.65

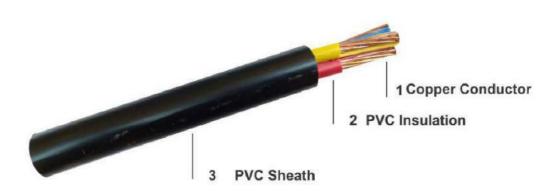
^{*} Cables are supplied generally in 90m coils


Single Core PVC Insulated PVC Sheathed 300/500 Volt Cables with Copper Conductor

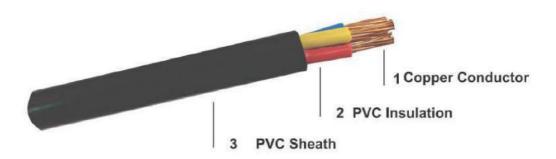
Nominal cross-		Radial thickness of	Radial thickness of	Mean overa	Approximate weight	
sectional area of conductors	Class of conductors	insulation	sheath	Lower Limits	Upper Limits	of Cable
mm ²		mm	mm	mm	mm	Kg / Km
1.0	1	0.6	0.8	3.7	4.5	28.47
1.5	1	0.7	0.8	4.2	5.0	37.56
2.5	1	0.8	0.8	4.8	5.7	52.3
4	2	0.8	0.9	5.5	6.7	75.76
6	2	0.8	0.9	6.0	7.3	98.57
10	2	1.0	0.9	7.3	8.8	152.78
16	2	1.0	1.0	8.4	10.1	221.4
25	2	1.2	1.1	10.0	12.1	336.03
35	2	1.2	1.1	11.1	13.5	438.15


Two Core PVC Insulated PVC Sheathed 300/500 Volt Flat Cables

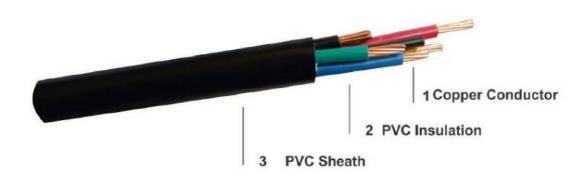
Nominal cross-		Radial thickness of	Radial thickness of	Mean overal	Approximate weight	
sectional area of conductors mm ²	Class of conductors	insulation mm	sheath mm	Lower Limits mm	Upper Limits mm	of Cable Kg / Km
6192Y	Î					1
1.0	1	0.6	0.9	3.9×6.1	4.8×7.4	59.69
1.5	1	0.7	0.9	4.4×7.0	5.3 x 8.5	78.93
2.5	1	0.8	1.0	5.1 x 8.4	6.2 x 10.1	113.90
4	2	0.8	1.0	5.7×9.5	6.9 x 11.5	154.43
6	2	0.8	1.1	6.4 x 10.8	7.8 x 13.0	207.82
10	2	1.0	1.2	7.9 x 13.4	9.5 x 16.2	325.11
16	2	1.0	1.3	8.9 x 15.4	10.8 x 18.6	466.42


Two Core PVC Insulated PVC Sheathed 300/500 Volt Circular Cables

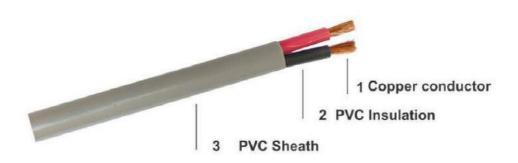
Nominal cross-	d ()	Radial thickness of insulation	Thickness of Inner	Radial thickness of sheath	Mean overal	Approximate weight	
sectional area of conductors	Class of conductors		Covering		Lower Limits	Upper Limits	of Cable
mm²	-	mm		mm	mm	mm	Kg / Km
1.5	1	0.7	0.4	1.2	8.4	10.0	109.35
1.5	2	0.7	0.4	1.2	8.4	10.5	112.60
2.5	1	0.8	0.4	1.2	9.6	11.5	172.78
2.5	2	0.8	0.4	1.2	9.6	12.0	176.31
4	1	0.8	0.4	1.2	10.5	12.5	217.35
4	2	0.8	0.4	1.2	10.5	13.0	224.15


Three Core PVC Insulated PVC Sheathed 300/500 Volt Circular Cables

Nominal cross-		Radial thickness of insulation	Thickness of inner covering	Radial thickness of sheath	Mean overall dimensions		Approximate weight
sectional area of conductors	Class of conductors				Lower Limits	Upper Limits	of Cable
mm ²		mm		mm	mm	mm	Kg / Km
1.5	1	0.7	0.4	1.2	8.8	10.5	137.20
1.5	2	0.7	0.4	1.2	8.8	11.0	142.64
2.5	1	0.8	0.4	1.2	10.0	12.0	184.80
2.5	2	0.8	0.4	1.2	10.0	12.5	190.62
4	1	0.8	0.4	1.2	11.0	13.0	240.48
4	2	0.8	0.4	1.2	11.0	13.5	248.30
6	2	0.8	0.4	1.4	1.5	15.5	341.03
10	2 2 2	1.0	0.6	1.4	15.5	19.0	517.95
16	2	1.0	0.8	1.4	18.0	21.5	709.40


Four Core PVC Insulated PVC Sheathed 300/500 Volt Circular Cables

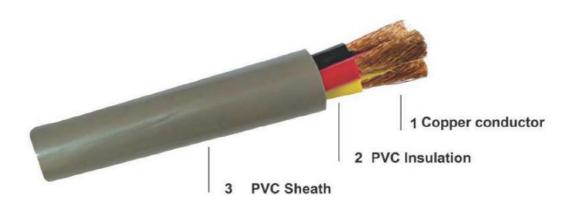
Class of conductors	Radial thickness of insulation	Thickness of inner covering	Radial thickness of sheath	Mean overall dimensions		Approximate weight
				Lower Limits	Upper Limits	of Cable
	mm		mm	mm	mm	Kg / Km
1	0.7	0.4	1.2	9.6	11.5	161.4
2	0.7	0.4	1.2	9.6	12.0	167.82
1	0.8	0.4	1.2	11.0	13.0	221.2
2	0.8	0.4	1.2	11.0	13.5	228.05
1	0.8	0.4	1.4	12.0	14.5	307.94
2	0.8	0.4	1.4	12.5	15.0	320.12
2	0.8	0.6	1.4	14.0	17.0	418.71
2	1.0	0.6	1.4	17.0	20.5	641.81
	1 2 1 2 1 2	Insulation Ins	Insulation Covering	mm	Class of conductors	Class of conductors


Five Core PVC Insulated PVC Sheathed 300/500 Volt Circular Cables

Nominal cross-	Class of conductors	ass of conductors Radial thickness of insulation	Thickness of inner Radial thickness of	Mean overal	Approximate weight		
sectional area of conductors			Covering	sheath	Lower Limits	Upper Limits	of Cable
mm²		mm		mm	mm	mm	Kg / Km
1.5	1	0.7	0.4	1.2	10.0	12.0	288.80
1.5	2	0.7	0.4	1.2	10.0	12.5	294.71
2.5	1	0.8	0.4	1.2	11.5	14.0	360.86
2.5	2	0.8	0.4	1.2	12.0	14.5	368.22
4	1	0.8	0.6	1.4	13.5	16.0	485.76
4	2	0.8	0.6	1.4	14.0	17.0	495.67
6	2	0.8	0.6	1.4	15.5	18.5	638.08


Two Core PVC Insulated PVC Sheathed 300/500 Volts Circular (Flexible) Cables

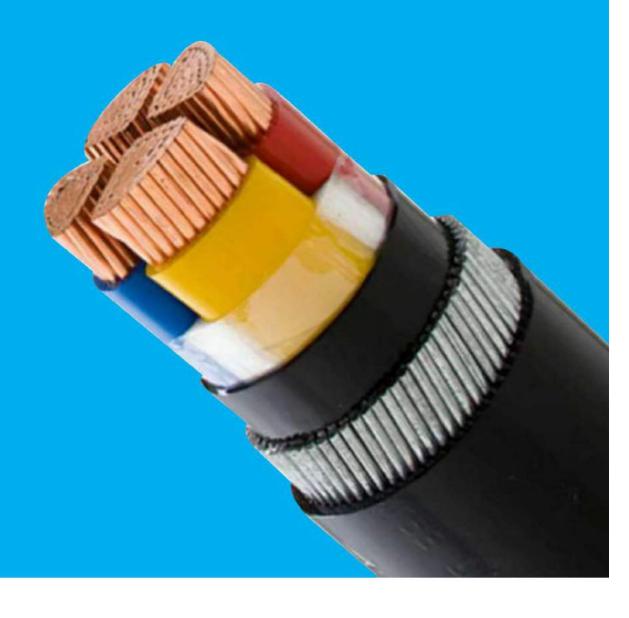
Radial thickness of	Radial thickness of	iviean overa	Mean overall dimensions		
insulation mm	sheath	Lower Limits	Upper Limits	of Cable Kg / Km	
0.6	0.8	5.7	7.2	60.00	
0.6	0.8	5.9	7.5	67.13	
0.7	0.8	6.8	8.6	90.50	
0.8	1.0	8.4	10.6	137.07	
0.8	1.1	9.7	12.1	192.96	
	mm 0.6 0.6 0.7 0.8	mm mm 0.6 0.8 0.6 0.8 0.7 0.8 0.8 1.0	mm mm mm 0.6 0.8 5.7 0.6 0.8 5.9 0.7 0.8 6.8 0.8 1.0 8.4	mm mm mm mm mm 0.6 0.8 5.7 7.2 0.6 0.8 5.9 7.5 0.7 0.8 6.8 8.6 0.8 1.0 8.4 10.6	


Three Core PVC Insulated PVC Sheathed 300/500 Volt Circular (Flexible) Cables

Nominal cross- sectional area of	Radial thickness of	Radial thickness of	Mean overa	I dimensions	Approximate weight
conductors	insulation	sheath	Lower Limits	Upper Limits	of Cable
mm²	mm	mm	mm	mm	Kg / Km
0.75	0.6	0.8	6.0	7.6	81.98
1	0.6	0.8	6.3	8.0	93.87
1.5	0.7	0.9	7.4	9.4	123.48
2.5	0.8	1.1	9.2	11.4	170.37
4	0.8	1.2	10.5	13.1	241.73

Four Core PVC Insulated PVC Sheathed 300/500 Volts Circular (Flexible) Cables

Nominal cross-	Radial thickness of	Radial thickness of	Mean overa	Il dimensions	Approximate weight
sectional area of conductors	insulation	sheath	Lower Limits	Upper Limits	of Cable
mm²	mm	mm	mm	mm	Kg / Km
0.75	0.6	0.8	6.6	8.3	108.36
1	0.6	0.9	7.1	9.0	121.89
1.5	0.7	1.0	8.4	10.5	160.01
2.5	0.8	1.1	10.1	12.5	219.83
4	0.8	1.2	11.5	14.3	310.00



Conductor Manufacturing Detail

Class 1 solid conductor for single-core and multi-core cables

Nominal cross-	Maximum resistano	ce of conductor at 20°C
sectional area	Circular,annealed copper conductors (Plain) Ω/km	Circular, aluminium conductors Ω/km
0.5	36.0	2
0.75	24.5	-
1	18.1	25
1.5	12.1	+
2.5	7.41	-
4	4.61	<u> </u>
6	3.08	-
10	1.83	3.08
16	1.15	1.91
25	0.727	1.20
35	0.524	0.868
50	0.387	0.641

Low Voltage Power Cables

Conductor Manufacturing Detail

Class 1 solid conductor for single-core and multi-core cables

Nominal cross-	Maximum resistan	ce of conductor at 20°C
sectional area	Circular, annealed copper conductors (Plain) Ω/km	Circular, aluminium conductors Ω/km
0.5	36.0	*
0.75	24.5	-
1	18.1	25
1.5	12.1	-
2.5	7.41	-
4	4.61	2
6	3.08	-
10	1.83	3.08
16	1.15	1.91
25	0.727	1.20
35	0.524	0.868
50	0.387	0.641

Conductor Manufacturing Detail

Class 2 stranded conductor for single-core and multi-core cables

285 18 769	Mini	mum nu	mber of	wires in	the cond	ductor	Maximum re	sistance of cond	ductor at 20°C
Nominal cross sectional	Cir	cular		ular acted	Sha	aped	Annealed cop	oper conductor	Aluminium or
area	Cu	AI	Cu	Al	Cu	AI	Plain wires	Metal coated wires	alloy conductor
mm							Ω/km	Ω/km	Ω/km
0.5	7	-	3.5	-		- 2	30.0	36.7	
0.75	7	320	-	120	-	-	24.5	24.8	
1.0	7	-	-	-	-		18.1	18.2	*
1.5	7	25	6	*	2	- 8	12.1	12.2	2
2.5	7	-	6	•			7.41	7.56	
4	7	3	6	3	+	-	4.61	4.70	
6	7	*	6				3.08	3.11	
10	7	7	6	6	1-	-	1.83	1.84	3.08
16	7	7	6	6		5	1.15	1.16	1.91
25	7	7	6	6	6	6	0.727	0.734	1.20
35	7	7	6	6	6	6	0.524	0.529	0.868
50	19	9	6	6	6	6	0.387	0.391	0.641
70	19	19	12	12	12	12	0.268	0.270	0.443
95	19	19	15	15	15	15	0.193	0.195	0.320
120	37	37	18	15	18	18	0.153	0.154	0.253
150	37	37	30	30	18	18	0.124	0.125	0.206
185	37	37	34	30	30	30	0.0991	0.100	0.164
240	37	37	34	30	34	34	0.0754	0.0762	0.125
300	61	61	53	53	34	34	0.0601	0.0607	0.100
400	61	61	53	53	53	53	0.0470	0.0475	0.0778
500	61	61	53	53	53	53	0.0366	0.0369	0.0605
630	91	91	53	53	53	53	0.0283	0.0286	0.0469
800	91	91	53	53	×		0.0221	0.0224	0.0367
1000	91	91	53	53	- 4		0.0176	0.0177	0.0291

DIMENSIONS AND WEIGHTSPVC Insulated and PVC Sheathed Power Cables

Single Core PVC Insulated and PVC Sheathed 600/1000 Volt Un-Armoured and Armoured Cables

		Un-armou	Un-armoured Cables		Armoured Cables	Cables	
sectional area of conductors	Thickness of Insulation	Thickness of sheath	Approximate overall diameter	Thickness of extruded Nominal armour wire bedding diameter	Nominal armour wire diameter	Thickness of oversheath	Approximate overall diameter
mm²	mm	mm	mm	mm	mm	mm	mm
50	1.4	1.4	15,1	0.8	1.25	1.5	19.1
70	1.4	1.4	16.9	0.8	1.25	1.6	21.1
95	1.6	1.5	19.4	0.8	1.25	1.6	23.4
120	1.6	1.5	21.0	1.0	1.6	1.7	26.3
150	1.8	1.6	23.2	1.0	1.6	1.7	28.3
185	2.0	1.7	25.8	1.0	1.6	1.8	30.8
240	2.2	1.8	29.0	1.0	1.6	1.9	34.1
300	2.4	1.9	32.1	1.0	1.6	1.9	37.0
400	2.6	2.0	35.8	1.2	2.0	2.1	42.0
500	2.8	2.1	39.6	1.2	2.0	2.1	45.6
630	2.8	2.2	43.8	1.2	2.0	2.2	49.7
800	2.8	2.3	48.3	1.4	2.5	2.4	55.8
1000	3.0	2.5	53.7	1.4	2.5	2.5	61.0

^{*} Circular or Circular compacted starnded conductors

PVC Insulated and PVC Sheathed Power Cable

Two Core PVC Insulated and PVC Sheathed 600/1000 Volt Armoured and UN-Armoured Cables

Applicable Standard: BS 6346

		Un-armoured Cables	red Cables		Armoured Cables	Cables	
sectional area of conductors	Thickness of Insulation	Thickness of sheath	Approximate overall	Thickness of extruded Nominal armour wire bedding diameter	Nominal armour wire diameter	Thickness of oversheath	Approximate overall
mm²	mm	mm	mm	mm	mm	mm	mm
1.5*	0.6			0.8	0.9	1.3	11.7
1.5**	0.6	•		0.8	0.9	1.4	12.3
2.5*	0.7	•		0.8	0.9	1.4	13.1
2.5**	0.7	•	•	0.8	0.9	1.4	13.6
4**	0.8	i	(4	0.8	0.9	1.4	15.1
6**	0.8	•	•	0.8	0.9	1.5	16.5
10**	1.0	1.8	16.1	0.8	1.25	1.6	20.1
16**	1.0	1.8	18.6	0,8	1.25	1.6	21.9
25^	1.2	1.8	18.4	1.0	1.6	1.7	23.0
25**	1.2	1.8	22.1	1.0	1.6	1.7	26.7
35^	1.2	1.8	20.1	1.0	1.6	1.8	24.9
35**	1.2	1.8	24.5	1.0	1.6	1.8	29.4
50^	1.4	1.8	22.8	1.0	1.6	1.9	27.8
70^	1.4	1.9	25.5	1.0	1.6	1.9	30.4
95^	1.6	2.0	29.3	1.2	2.0	2.1	35.5
120^	1.6	2.1	31.8	1.2	2.0	2.2	32.0
150^	1.8	2.2	35.1	1.2	2.0	2.3	41.3
185^	2.0	2.4	39.1	1.4	2.5	2.4	46.4
240^	2.2	2.5	43.9	1.4	2.5	2.5	51.2
300^	2.4	2.7	48.7	1.6	2.5	2.7	56.4
400^	2.6	2.9	54.2	1.6	2.5	2.9	61.9

^{*} Circular Solid Conductor (Class 1)

^{**} Circular or Circular Compacted stranded conductors (class 2)

[^] Shaped stranded conductors (Class 2)

PVC Insulated and PVC Sheathed Power Cables

Three Core PVC Insulated and PVC Sheathed 600/1000 Volt Un-Armoured and Armoured Cables

Applicable Standard: BS 6346

		Un-armoured Cables	red Cables		Armoured	Cables	
sectional area of conductors	Thickness of Insulation	Thickness of sheath	Approximate overall diameter	Thickness of extruded Nominal armour wire bedding diameter	Nominal armour wire diameter		Approximate overall diameter
mm²	mm	mm	mm	mm	mm	mm	mm
1.5*	0.6	a)		8.0	0.9	1.4	12.3
1.5**	0.6	ic.	ĸ	0.8	0.9	1.4	12.8
2.5*	0.7			0.8	0.9	1.4	13.6
2.5**	0.7	ř.		0.8	0.9	1.4	14.1
4**	8.0	æ		0.8	0.9	1.4	15.8
6**	0.8	τ.		0.8	1.25	1.5	18.0
10**	1.0	1.8	17.0	0.8	1.25	1.6	21.2
16**	1.0	1.8	19.7	0.8	1.25	1.6	23.1
25^	1.2	1.8	20.4	1.0	1.6	1.7	25.0
25**	1.2	1.8	23.5	1.0	1.6	1.7	28.2
35^	1.2	1.80	22.4	1.0	1.6	1.8	27.3
35**	1.2	1.8	26.2	1.0	1.6	1.8	31.0
50^	1.4	1.8	25.5	1.0	1.6	1.9	30.5
70^	1.4	1.9	28.7	1.2	2.0	2.0	35.0
95^	1.6	2.1	33.3	1.2	2.0	2.1	39.3
120^	1.6	2.2	36.3	1.2	2.0	2.2	42.2
150^	1.8	2.3	40.0	1.4	2.5	2.4	47.5
185^	2.0	2.5	44.6	1.4	2.5	2.5	51.9
240^	2.2	2.6	50.1	1.6	2,5	2.6	57.8
300^	2.4	2.8	55.6	1.6	2.5	2.8	63.2
400^	2.6	3.1	62.2	1.6	2.5	3.0	69.6

^{*} Circular Solid Conductor (Class 1)

^{**} Circular or Circular Compacted stranded conductors (class 2)

^ Shaped stranded conductors (Class 2)

PVC Insulated and PVC Sheathed Power Cables DIMENSIONS AND WEIGHTS

Four Core PVC Insulated and PVC Sheathed 600/1000 Volt Un-Armoured and Armoured Cables

		Un-armou	Un-armoured Cables		Armoured Cables	Cables	
sectional area of	Thickness of	T : 1	Approximate overall	Thickness of extruded Nominal armour	Nominal armour wire	Thickness of	Approximate overall
conductors	Insulation	inickness of shearn	diameter	bedding	diameter	oversheath	diameter
mm²	mm	mm	mm	mm	mm	mm	mm
1.5*	0.6	е	ī	0.8	0.9	1.4	13.0
1.5**	0.6	į.	ı	0.8	0.9	1.4	13.5
2.5*	0.7	a.	.1	0.8	0.9	1.4	14.5
2.5**	0.7		t	0.8	0.9	1.4	15.0
4**	0.8	ж.	ĸ	0.8	1.25	1.5	17.8
6**	0.8	3	9	0.8	1.25	1.5	19.2
10**	1.0	1.8	18.6	0.8	1.25	1.6	22.8
16**	1.0	1.8	21.6	1.0	1.6	1.7	26.3
25^	1.2	1.8	22.9	1.0	1.6	1.8	27.8
25**	1.2	1.8	25.9	1.0	1.6	1.8	30.7
35^	1.2	1.8	25.4	1.0	1.6	1.9	30.5
35**	1.2	1.8	28.9	1.0	1.6	1.9	33.9
50^	1.4	1.9	29.2	1.2	2.0	2	35.4
70^	1.4	2.0	33.0	1.2	2.0	2.1	39.2
95^	1.6	2.2	38.3	1.2	2.0	2.2	44.3
120^	1.6	2.3	41.8	1.4	2.5	2.4	49.3
150^	1.8	2.5	46.3	1.4	2.5	2.5	53.6
185^	2.0	2.6	51.3	1.6	2.5	2.6	59.0
240^	2.2	2.8	58.0	1.6	2.5	2.8	65.7
300^	2.4	3.1	64.6	1.6	2.5	3.0	72.0
400^	2.6	3.3	72.0	1.8	3.15	3.3	81.3

^{*} Circular Solid Conductor (Class 1)

^{**} Circular or Circular Compacted stranded conductors (class 2)

^ Shaped stranded conductors (Class 2)

PVC Insulated and PVC Sheathed Power Cables

Four Core PVC Insulated and PVC Sheathed 600/1000 Volt Un-Armoured and Armoured Cables with Reduced Neutral Conductor

Naminal		Thickness of	Thickness of	Un-armoured Cables	red Cables		Armoured Cables	Cables	
sectional area of conductors	Nominal area of neutral conductor	insulation Phase	insulation neutral	Thickness of sheath	Approximate overall diameter	Thickness of extruded bedding	Nominal armour wire diameter	Thickness of oversheath	Approximate overall diameter
mm²	mm²	mm	mm	mm	mm	mm	mm	mm	mm
25	16	1.2	1.0	1.8	22.9	1.0	1.6	1.8	27.8
25*	16	1.2	1.0	1.8	24.9	1.0	1.6	1.8	29.7
35	16	1.2	1.0	1.8	24.7	1.0	1.6	1.8	29.5
35*	16	1.2	1.0	1.8	27.3	1.0	1.6	1.8	32.1
50	25	1.4	1.2	1.9	28.3	1.0	1.6	1.9	33,1
70	35	1.4	1.2	2.0	32.0	1.2	2.0	2.0	38.0
95	50	1.6	1.4	2.1	37.5	1.2	2.0	2.2	43.7
120	70	1.6	1.4	2.2	41.4	1.4	2.5	2.3	49.0
150	70	1.8	1.4	2.4	44.7	1.4	2.5	2.4	52.0
185	95	2.0	1.6	2.5	49.9	1.4	2.5	2.5	57.2
240	120	2.2	1.6	2.7	56.0	1.6	2.5	2.7	63.7
300	150	2.4	1.8	2.9	62.2	1.6	2.5	2.9	69.8
300	185	2.4	2.0	2.9	64.2	1.6	2.5	2.9	71.8
400	185	2.6	2.0	3.2	69.9	1.8	3.2	3.1	78.6

^{*} Circular or Circular Compacted Stranded Conductors

XLPE Insulated and PVC Sheathed Power Cables

Single Core XLPE Insulated and PVC Sheathed 600/1000 Volts Un-Armoured Cables

Applicable Standard: IEC 60502-1/ BS 7889

Nominal cross-sectional area of conductor A)	Radial thickness of insulation	Approximate thickness of inner covering	Radial thickness of sheath
mm²	mm	mm	mm
1.5	0.7	0.4	1.4
2,5	0.7	0.4	1.4
4	0.7	0.4	1.4
6	0.7	0.4	1.4
10	0.7	0.4	1.4
16	0.7	0.4	1.4
25	0.9	0.4	1.4
35	0.9	0.4	1.4
50	1.0	0.6	1.4
70	1.1	0.6	1.4
95	1.1	0.6	1.5
120	1.2	0.8	1.5
150	1.4	0.8	1.6
185	1.6	0.8	1.6
240	1.7	1.0	1.7
300	1.8	1.0	1.8
400	2.0	1.2	1.9
500	2.2	1.2	2.0
630	2.4	1.4	2.2
800	2.6	1.6	2.3
1 000	2.8	1.6	2.4

A) Circular or compacted circular stranded conductor (Class 2).

XLPE Insulated and PVC Sheathed Power Cables

Three Core XLPE Insulated and PVC Sheathed 600/1000 Volts Un-Armoured Cables

Applicable Standard: IEC 60502-1/ BS 7889

	inal cross-sectional of conductor	Radial thickness of insulation	Approximate thickness of inner covering	Radial thickness of sheath
mm ²		mm	mm	mm
1.5	5 A)	0.7	0.4	1.8
2.5	5 A)	0.7	0.4	1.8
4	A)	0.7	0.4	1.8
6	A)	0.7	0.4	1.8
10	A)	0.7	0.6	1.8
16	A)	0.7	0.6	1.8
25	A)	0.9	0.8	1.8
35	A)	0.9	0.8	1.8
50	A)	1.0	1.0	1.8
70	A)	1.1	1.2	1.9
95	A)	1.1	1.2	2.0
120	A)	1.2	1.2	2.1
25	8)	0.9	0.6	1.8
35	B)	0.9	0.8	1.8
50	B)	1.0	0.8	1.8
70	B)	1.1	1.0	1.9
95	B)	1.1	1.2	2.0
120	B)	1.2	1.2	2.1

A) Circular or compacted circular stranded conductor (Class 2).

⁸⁾ Shaped stranded conductor (Class 2).

XLPE Insulated and PVC Sheathed Power Cables

Four Core XLPE Insulated and PVC Sheathed 600/1000 Volts Un-Armoured Cables

Applicable Standard: IEC 60502-1/BS 7889

Nominal cross-sectional area of conductor	Radial thickness of insulation	Approximate thickness of inner covering	Radial thickness of sheath mm	
mm ²	mm	mm		
1.5 ^{A)}	0.7	0.4	1.8	
2.5 ^{A)}	0.7	0.4	1.8	
4 A)	0.7	0.4	1.8	
6 A)	0.7	0.6	1.8	
10 A)	0.7	0.6	1.8	
16 A)	0.7	0.6	1.8	
25 A)	0.9	0.8	1.8	
35 A)	0.9	1.0	1.8	
50 A)	1.0	1.0	1.8	
70 A)	1.1	1.2	2.0	
95 A)	1.1	1.2	2.1	
120 A)	1.2	1.2	2.3	
25 B)	0.9	0.8	1.8	
35 B)	0.9	0.8	1.8	
50 B)	1.0	1.0	1.8	
70 B)	1.1	1.2	2.0	
95 ⁸⁾	1.1	1.2	2.1	
120 ^{B)}	1.2	1.2	2.3	

 [☼] Circular or compacted circular stranded conductor (Class 2).
 ☼ Shaped stranded conductor (Class 2).

XLPE Insulated and PVC Sheathed Power Cables

Five Core XLPE Insulated and PVC Sheathed 600/1000 Volts Un-Armoured Cables

Applicable Standard: IEC 60502-1/ BS 7889

Nominal cross-sectional area of conductor ^{A)}	Radial thickness of insulation	Approximate thickness of inner covering	Radial thickness of sheath	
mm²	mm	mm	mm	
1.5	0.7	0.4	1.8	
2.5	0.7	0.4	1.8	
4	0.7	0.6	1.8	
6	0.7	0.6	1.8	
10	0.7	0.6	1.8	
16	0.7	0.8	1.8	
25	0.9	1.0	1.8	
35	0.9	1.0	1.8	
50	1.0	1.2	1.9	
70	1.1	1.2	2.1	
95	1.1	1.4	2.2	
120	1.2	1.4	2.4	

A) Circular or compacted circular stranded conductor (Class 2).

XLPE Insulated and PVC Sheathed Power Cables

Single Core XLPE Insulated and PVC Sheathed 600/1000 Volts Armoured Cables

Nominal cross-sectional area of conductor ^{A)} mm ²	Radial thickness of insulation	Nominal thickness of extruded bedding mm	Nominal aluminium armour wire diameter mm	Nominal thickness of oversheath	Approximate overall diameter
50	1.0	0.8	0.9	1.5	17.5
70	1.1	0.8	1.25	1.5	20.2
95	1.1	0.8	1.25	1.6	22.3
120	1.2	0.8	1.25	1.6	24.2
150	1.4	1.0	1.6	1.7	27.4
185	1.6	1.0	1.6	1.8	30.0
240	1.7	1.0	1.6	1.8	32.8
300	1.8	1.0	1.6	1.9	35.6
400	2.0	1.2	2.0	2.0	40.5
500	2.2	1.2	2.0	2,1	44.2
630	2.4	1.2	2.0	2.2	48.8
800	2.6	1.4	2.5	2.4	55.4
1 000	2.8	1.4	2.5	2.5	60.6

A) Circular or compacted circular stranded conductor (Class 2).

XLPE Insulated and PVC Sheathed Power Cables

Two Core XLPE Insulated and PVC Sheathed 600/1000 Volts Armoured Cables

Nominal cross-sectional area of conductor	Radial thickness of insulation	Nominal thickness of extruded bedding	Nominal steel armour wire diameter	Nominal thickness of oversheath	Approximate overall diameter
mm²	mm	mm	mm	mm	mm
1.5 ^{A)}	0.6	0.8	0.9	1.3	12.1
2.5 ^{A)}	0.7	0.8	0.9	1.4	13.6
4 A)	0.7	0.8	0.9	1.4	14.7
6 A)	0.7	0.8	0.9	1.4	15.9
10 A)	0.7	0.8	0.9	1.5	18.0
16 A)	0.7	0.8	1.25	1.5	20.4
25 A)	0.9	0.8	1.25	1.6	24.1
25 B)	0.9	0.8	1.25	1.6	20.4
35 ^{A)}	0.9	1.0	1.6	1.7	27.7
35 B)	0.9	1.0	1.6	1.7	23.3
50 A)	1.0	1.0	1.6	1.9	30.8
50 B)	1.0	1.0	1.6	1.8	25.8
70 A)	1.1	1.2	2.0	2.0	36.2
70 ^{B)}	1.1	1.0	1.6	1.9	29.0
95 ^{A)}	1.1	1.2	2.0	2.1	40.2
95 B)	1.1	1.2	2.0	2.0	33.1
120 ^{A)}	1.2	1.2	2.0	2.1	44.1
120 B)	1.2	1.2	2.0	2.1	36.1
150 ^{B)}	1.4	1.2	2.0	2.2	39.3
185 B)	1.6	1.4	2.5	2.4	44.7
240 B)	1.7	1.4	2.5	2.5	49.0
300 B)	1.8	1.6	2.5	2.6	53.5
400 B)	2.0	1.6	2.5	2.8	59.0

A) Circular or compacted circular stranded conductor (Class 2).

^{B)} Shaped stranded conductor (Class 2).

DIMENSIONS AND WEIGHTS

XLPE Insulated and PVC Sheathed Power Cables

Three Core XLPE Insulated and PVC Sheathed 600/1000 Volts Armoured Cables

Applicable Standard: BS 5467

Nominal cross-sectional area of conductor	Radial thickness of insulation	Nominal thickness of extruded bedding	Nominal steel armour wire diameter	Nominal thickness of oversheath	Approximate overall diameter
mm ²	mm	mm	mm	mm	mm
1.5 A)	0.6	0.8	0.9	1.3	12.6
2.5 🖎	0.7	0.8	0.9	1.4	14.1
4 A)	0.7	0.8	0.9	1.4	15.3
6 A)	0.7	0.8	0.9	1.4	16.6
10 A)	0.7	0.8	1.25	1.5	19.5
16 A)	0.7	0.8	1.25	1.6	21.6
25 ^{A)}	0.9	1.0	1.6	1.7	26.7
25 ^{B)}	0.9	1.0	1.6	1.7	23.6
35 ^{A)}	0.9	1.0	1.6	1.8	29.4
35 ^{B)}	0.9	1.0	1.6	1.8	25.7
50 ^{A)}	1.0	1.0	1.6	1.9	32.5
50 B)	1.0	1.0	1.6	1.8	28.5
70 A)	1.1	1.2	2.0	2.0	38.3
70 ^{B)}	1.1	1.0	1.6	1.9	32.2
95 A)	1.1	1.4	2.0	2.2	42.6
95 ^{B)}	1.1	1.2	2.0	2.1	37.0
120 A)	1.2	1.4	2.5	2.3	48.1
120 B)	1.2	1.2	2.0	2.2	40.4
150 B)	1.4	1.4	2.5	2.3	45.5
185 ^{B)}	1.6	1.4	2.5	2.4	49.8
240 B)	1.7	1.4	2.5	2.6	55.1
300 B)	1.8	1.6	2.5	2.7	60.2
400 B)	2.0	1.6	2.5	2.9	66.6

A) Circular or compacted circular stranded conductor (Class 2).

⁸⁾ Shaped stranded conductor (Class 2).

DIMENSIONS AND WEIGHTS

XLPE Insulated and PVC Sheathed Power Cables

Four Core XLPE Insulated and PVC Sheathed 600/1000 Volts Armoured Cables

Applicable Standard: BS 5467

Nominal cross-sectional area of conductor	Radial thickness of insulation	Nominal thickness of extruded bedding	Nominal steel armour wire diameter	Nominal thickness of oversheath	Approximate overall diameter
mm²	mm	mm	mm	mm	mm
1.5 ^{A)}	0.6	0.8	0.9	1.3	13.3
2.5 ^)	0.7	0.8	0.9	1.4	15.0
4 A)	0.7	0.8	0.9	1.4	16.4
6 A)	0.7	0.8	(i) 1.25 (ii	1.5	18.7
10 A)	0.7	0.8	1.25	1.5	21.1
16 A)	0.7	0.8	1.25	1.6	23.4
25 A)	0.9	1.0	1.6	1.7	28.9
25 B)	0.9	1.0	1.6	1.7	26.1
35 ^{A)}	0.9	1.0	1.6	1.8	31.9
35 B)	0.9	1.0	1.6	1.8	28.6
50 ^{A)}	1.0	1.2	2.0	2.0	36.6
50 B)	1.0	1.0	1.6	1.9	32.0
70 ^{A)}	1.1	1.2	2.0	2.2	41.9
70 B)	1.1	1.2	2.0	2.1	37.7
95 ^{A)}	1.1	1.4	2.5	2.3	48.1
95 B)	1.1	1.2	2.0	2.2	41.7
120 A)	1.2	1.4	2.5	2.4	52.6
120 B)	1.2	1.4	2.5	2.3	47.1
150 B)	1.4	1.4	2.5	2.4	51.4
185 B)	1.6	1.4	2.5	2.6	56.6
240 B)	1.7	1.6	2.5	2.7	63.0
300 B)	1.8	1.6	2.5	2.9	68.8
400 B)	2.0	1.8	3.15	3.2	78.1

A) Circular or compacted circular stranded conductor (Class 2).

B) Shaped stranded conductor (Class 2).

DIMENSIONS AND WEIGHTS

XLPE Insulated and PVC Sheathed Power Cables

Five Core XLPE Insulated and PVC Sheathed 600/1000 Volts Armoured Cables

Applicable Standard: BS 5467

Nominal cross-sectional area of conductor ^{A)} mm ²	Radial thickness of insulation mm	Nominal thickness of extruded bedding mm	Nominal steel armour wire diameter	Nominal thickness of oversheath mm	Approximate overall diameter
1.5	0.6	0.8	0.9	1.4	14.3
2.5	0.7	0.8	0.9	1.4	16.1
4	0.7	8.0	0.9	1.5	17.8
6	0.7	0.8	1.25	1.5	20.0
10	0.7	0.8	1.25	1.6	22.9
16	0.7	1.0	1.6	1.7	26.6
25	0.9	1.0	1.6	1.8	31.5
35	0.9	1.0	1.6	1.9	34.8
50	1.0	1.2	2.0	2.0	40.4
70	1.1	1.2	2.0	2.2	46.3

A) Circular or compacted circular stranded conductor (Class 2).

Core Identification

Million Supreme Cables follow both Old and New colour sequence depend on customer's requirement.

Cable Type	Old Core Colours	New Core Colours *
Single - Core	Red or Black	Brown or Blue
Two - Core	Red, Black	Brown, Blue
Three - Core	Red, Yellow, Blue	Brown, Black, Gray
Four - Core	Red, Yellow, Blue, Black	Blue, Brown, Black, Gray
Five - Core	Red, Yellow, Blue, Black, Green- and-Yellow	Green-and-Yellow, Blue, Brown, Black, Gray

Sheath Colour is Gray or Black (according to customer demand)

* Reference; BS 7671-18th Edition

Cable Installation Bending Radius:

Construction (cables with)	Minimum internal radius of bend
Circular copper conductors (overall cable diameter Less than or equal to 25mm)	4xD
Circular copper conductors (overall cable diameter greater than or equal to 25mm)	6xD
Shaped copper conductor	8xD
Armoured cables	8xD

Where, D is the measured overall diameter of the cable.

Note; Wherever possible, larger installation radius should be used

Quality Control

At MS Cables we follow the philosophy of famous quote "Quality is never an accident, it is always the result of intelligent efforts".

In the manufacture of cables, intelligent efforts are incorporated to achieve quality. All raw materials are selected carefully and only materials of high quality are used in production. Having done this, stage wise inspection is done to ensure conformity with the requirements of relevant Standards where these apply. Detail of stage wise inspection is below.

Stage - Wise Inspection

Section Check

Wire-Drawing: Wire diameter, Surface, Shape, Quality of joints in the wire Stranding: Compaction of conductor, Shape of Conductor, Dimension,

Resistance of Conductor

Insulation: Diameter over Insulation, Thickness of Insulation, Curing: Hot set test, Tensile strength & elongation test.

(For XLPE only)

Laying Up: Sequence of Cores, Direction of lay, Diameter over laid up cores, Circularity of laid up

Cables

Inner Sheath: Thickness of Sheath, Diameter over Sheath, Surface Uniformity, Circularity

Armoring: Diameter of Wires/ Dimensions of Strips, Direction of lay, Quality of Joints of Wires

Outer Sheath: Thickness of Sheath, Diameter over Sheath, Tightness of Sheath, Embossing

The tests on cables have been classified broadly in four categories as follows:

Routine Tests: Tests carried out on each cable to check the requirements which are likely to vary during production.

Type Tests: Tests carried out to prove conformity with the specification.

Factory Acceptance Tests: Tests carried out on samples taken from a lot for the purpose of acceptance of the lot by customer.

Optional Tests: Special tests to be carried out when required by agreement between the purchaser and the manufacturer. Together with the most advanced equipment available, we are able to offer to our valued customer's assurances of highest quality and strict adherence to the required specification.

As a third party guarantee, our cables have passed rigorous tests at various Government recognized test. laboratories such as Iski Jagah UET Lahore and PCSIR Pakistan.

Installation Methods

Ref: BS 7671

Table 4A2- Schedule of Installation Methods of cables (including Reference method) for determining current-carrying capacity

	70	Installation Method	Reference Method to be used to
Number	Examples	Description	determine current- carrying capacity
1	Room	Non-sheathed cables in conduit in a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 W/m2K	A
2	Room	Multicore cable in conduit in a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 Wlin2K	А
3	Room	Multicore cable direct in a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 Wim2K	A
4		Non-sheathed cables in conduit on a wooden or masonry wall or spaced less than 0.3 x conduit diameter from it	В
5		Multicore cable in conduit on a wooden or masonry wall or spaced less than 0.3 x conduit diameter from it	В
6 7	6 7	Non-sheathed cables in cable trunking on a wooden or masonry wall 6 - run horizontally b 7 - run vertically b.c	В
8 9	8 9	Multicore cable in cable trunking on a wooden or masonry wall 8 - run horizontally b 9 - run vertically b.c	в*
10	STREET, SECURITY 3	Non-sheathed cables in suspended cable trunking b	В
11	10 01	Multicore cable in suspended cable trunking	В
12		Non-sheathed cables run in mouldings c.c	А

b Values given for Reference Method B in Appendix 4 are for a single circuit. Where there is more than one circuit in the trunking the group rating factor given in Table 4C1 is applicable, irrespective of the presence of an internal barrier or partition.

c Care is needed where the cable runs vertically and ventilation is restricted. The ambient temperature at the top of the vertical section can be much higher.

e The thermal resistivity of the enclosure is assumed to be poor because of the material of construction and possible air spaces. Where the construction is thermally equivalent to Installation Methods 6 or 7. Reference Method B may be used.

^{*} Still under consideration in IEC.

		Installation Method	Reference Method to be used to
Number	Examples	Description	determine current- carrying capacity
15		Non-sheathed cables in conduit or single-core or multicore cable in architrave "	A
16		Non-sheathed cables in conduit or single-core or multicore cable in window frames "	А
24		Single-core or multicore cables: - fixed on (clipped direct), or spaced less than 0.3 x cable diameter from a wooden or masonry wall	c
21		Single-core or multicore cables: - fixed directly under a wooden or masonry ceiling	с
22		Single-core or multicore cables: - spaced from a ceiling	E F or G
23		Not used	
30	13 Eq. (13 Dq.	Single-core or multi core cables: - on unperforated tray run horizontally or vertically	C with item 2 of table 4C1
31	241 O ₂	Single-core or multicore cables: - on perforated tray run horizontally or vertically	EorF
32	10306	Single-core or multicore cables: - on brackets or on a wire mesh tray run horizontally or vertically ".	EorF

- c Care is needed where the cable runs vertically and ventilation is restricted. The ambient temperature at the top of the vertical section can be much higher.
- f The thermal resistivity of the enclosure is assumed to be poor because of the material of construction and possible air spaces. Where the construction is thermally equivalent to Installation Methods 6, 7, 8 or 9, Reference Method B may be used.
- h De = the external diameter of a multicore cable:
 - 2.2 x the cable diameter when three single-core cables are bound in trefoil, or
 - 3 x the cable diameter when three single-core cables are laid in flat formation.
- * Still under consideration in IEC.

		Installation Method	Reference Method to be used to
Number	Examples	Description	determine current- carrying capacity
33		Single-core or multicore cables: - spaced more than 0.3 times the cable diameter from a wall	E,F or Gg
34		Single-core or multicore cables: - on a ladder	EorF
35		Single-core or multicore cable suspended from or incorporating a support wire or harness	E or F
36	-	Bare or non-sheathed cables on insulators	G
40	De S	Single-core or multicore cable in a building void	Where 1.5 D <v<20 b<="" d="" td="" use=""></v<20>
41	De V	Non-sheathed cables in conduit in a building void in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v use B</v
42	D _e	Single-core or multicore cable in conduit in a building void in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v use B</v
43	De V	Non-sheathed cables in cable ducting in a building void in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v use B</v
44	De V	Single-core or multicore cable in cable ducting in a building void in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v use B</v
45	De'	Non-sheathed cables in cable ducting in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v<50 d<br="">use B</v<50>
46	De V	Single-core or multicore cable in cable ducting in masonry having a thermal resistivity not greater than 2 K.m/W	Where 1.5 D <v<50 d<br="">use B</v<50>
47	p _e (3) Y	Single-core or multicore cable: - in a ceiling void - in a suspended floor	Where 1.5 D <v<50 b<="" d="" td="" use=""></v<50>

c Care is needed where the cable runs vertically and ventilation is restricted. The ambient temperature at the top of the vertical section can be much higher.

g The factors in Table 4C1 may also be used.

h Dc = the external diameter of a multicore cable:

^{- 2.2 &}gt;, the cable diameter when three single-core cables are bound in trefoil, or

^{- 3} X the cable diameter when three single-core cables are laid in flat formation.

V = the smaller dimension or diameter of a masonry duct or void. or the vertical depth of a rectangular duct, floor or ceiling void or channel.

j Dc = external diameter of conduit or vertical depth of cable. ducting.

		Installation Method	Reference Method to be used to	
Number	Examples	Description	determine current- carrying capacity	
50	8	Non-sheathed cables in flush cable trunking in the floor	В	
51		Multicore cable in flush cable trunking in the floor	В	
52	TV TV	Non-sheathed cables in flush trunking	В	
53	52 53	Multicore cable in flush trunkine	В	
54	e V	Non-sheathed cables or single-core cables in conduit in an unventilated cable channel run horizontally or vertically	Where 1.5 D < V Use B	
55		Non-sheathed cables in conduit in an open or ventilated cable channel in the floor	В	
56	<u></u>	Sheathed single-core or multicore cable in an open or ventilated cable channel run horizontally or vertically	В	
57		Single-core or multicore cable direct in masonry having a thermal resistivity not greater than 2 K.m/W - without added mechanical protection	С	
58		Single-core or multicore cable direct in masonry having a thermal resistivity not greater than 2 K.m/W - with added mechanical protection (e.g. capping)	С	
59		Non-sheathed cables or single-core cables in conduit in masonry having a thermal resistivity not greater than 2 K.m/W	В	
60		Multicore cables in conduit in masonry having a thermal resistivity not greater than 2 K.m/W	В	

- c Care is needed where the cable runs vertically and ventilation is restricted. The ambient temperature at the top of the vertical section can be much higher.
- k De= external diameter of conduit.
- i V = the smaller dimension or diameter of a masonry duct or void, or the vertical depth of a rectangular duct, floor or ceiling void or channel. The depth of the channel is more important than the width.
- For multicore cable installed as Method 55, use current-carrying capacity for Reference Method B.
- m It is recommended that these Installation Methods are used only in areas where access is restricted to authorized persons so that the reduction in current-carrying capacity and the fire hazard due to the accumulation of debris can be prevented.
- n For cables having conductors not greater than 16 mm2, the current-carrying capacity may be higher.
- Thermal resistivity of masonry is not greater than 2 K.m/W. The term masonry is taken to include brickwork, concrete, plaster and the like (excludes thermally insulating materials).

Installation Method Reference Method					
Number	Examples	Description	to be used to determine current- carrying capacity		
70		Multicore armoured cable in conduit or in cable ducting in the ground	D For multicore armoured cable only		
71		Not used			
72		Sheathed armoured or multicore cables direct in the ground -without added mechanical protection (see note)	D		
73		Sheathed armoured or multicore cables direct in the ground -with added mechanical protection (e.g cable covers) (see note)	D		

NOTE: The inclusion of directly buried cables is satisfactory where the soil thermal resistivity is of the order of 2.5 K.m/W For lower soil resistivities the current carrying capacity for directly buried cables is appreciably higher than for cables in ducts.

Table 4A2 (continued Installation methods for flat twin earth cables in thermal insulation)

	Reference Method to be used to		
Number	Examples	Description	determine current- carrying capacity
100		Installation methods for flat twin and earth cable clipped direct to a wooden joist, or touching the plasterboard ceiling surface, above a plasterboard ceiling with thermal insulation not exceeding 100 mm in thickness having a minimum U value of 0.1 W/m2K	Table 4D5
101		Installation methods for flat twin and earth cable clipped direct to a wooden joist, or touching the plasterboard ceiling surface, above a plasterboard ceiling with thermal insulation exceeding 100 mm in thickness having a minimum U value of 0.1 W/m2K.	Table 4D5
102		Installation methods for flat twin and earth cable in a stud wall with thermal insulation with a minimum U value of 0.1 W/m2K with the cable touching the inner wall surface, or touching the plasterboard ceiling surface, and the inner skin having a minimum U value of 10 W/m2K	Table 4D5
103		Installation methods for flat twin and earth cable in a stud wall with thermal insulation with a minimum U value of 0.1 •/m2K with the cable not touching the inner wall surface	Table 4D5

Wherever practicable. a cable is to be fixed in a position such that it will not be covered with thermal insulation.

Regulation 523.9. BS 5803-5: Appendix C: Avoidance of overheating of electric cables. Building Regulations Approved Document B and Thermal insulation: avoiding risks, BR 262. BRE, 2001 refer.

Table 4A2 (continued) Installation methods for cables enclosed in infloor concrete troughs)

		Installation Method	Reference Method to be used to
Number	Examples	Description	determine current- carrying capacity
117		Cables supported on the wall of an open or ventilated infloor concrete trough with spacing as follows: - Sheathed single-core cables in free air (any supporting metalwork under the cables occupying less than 10 % of plan area). - Two or three cables vertically one above the other, minimum, distance between cable surfaces equal to the overall cable diameters, distance from the wall not less than 'A the cable diameter. - Two or three cables horizontally with spacing as above.	E or F
118		Cables in enclosed trench 450 mm wide by 300 mm deep (minimum dimensions) including 100 mm cover - Two to six single—core cables with surfaces separated by a minimum of one cable diameter - One or two groups of three single-core cables in trefoil formation - One to four 2-core cables or one to three cables of 3 or 4 cores with all cables separated by a minimum of 50 mm	E or F using rating factors in Table 4C6
119		Cables enclosed in an infloor concrete trough 450 mm wide by 600 mm deep (minimum dimensions) including 100 mm cover. Six to twelve single-core cables arranged in flat . groups of two or three on the vertical trench wall with cables separated by one cable diameter and a minimum of 50 mm between groups. Or two to four groups of three single-core cables in trefoil formation with a minimum of 50 mm between trefoil formations. or four to eight 2-core cables or three to six cables of 3 or 4 cores with cables separated by a minimum of 75 mm. All cables spaced at least 25 mm from trench wall.	E or F using rating factors in Table 4C6

Table 4A2 (continued) Installation methods for cables enclosed in infloor concrete troughs)

		Installation Method	Reference Method to be used to
Number	Examples	Description	determine current- carrying capacity
120		Cables enclosed in an ipfloor concrete trough 600 mm wide by 760 mm deep (minimum dimensions) including 100 mm cover. Twelve to twenty-four single-core cables arranged in either flat formation of two or three cables in a group with cables separated by one cable diameter and each cable group separated by a minimum of 50 mm either horizontally or vertically or single-core cables in trefoil formation with each group or trefoil formation separated by a minimum of 50 mm either horizontally or vertically or eight to sixteen 2-core cables or six to twelve cables of 3 or 4 cores with cables separated by a minimum of 75 mm either horizontally or vertically. All cables spaced at least 25 mm from trench wall.	E or F using rating factor Table 4C6

Current Carrying Capacity & Voltage Drop

Current Carrying Capacity and Voltage Drop of cable mentioned in this catalogue are taken from BS 7671, 18th Edition. (IET wiring regulation)

Million Supreme Wires & Cables is the official member of BSI (British Standard Institution)

TABLE 4C4 – Rating factors for groups of more than one multicore cable, to be applied to reference current-carrying capacities for multicore cables in free air – Reference Method E in Tables 4D2A to 4J4A

Installat	ion M	lethod in Table 4A2	Number of	N	lumber o	f cables	per tray	or ladde	er
			trays or ladders	1	2	3	4	6	9
		Touching	1		Se	e item 3 c	f Table 4	~1	
		Touching (Company)	2	1.00	0.87	0.80	0.77	0.73	0.68
			3	1.00	0.86	0.79	0.76	0.71	0.66
Perforated		00000	6	1.00	0.84	0.77	0.73	0.68	0.64
eable tray systems	31	≥ 20 mm ≥ 300 mm		1.00	0.64	0.77	0.73	0.08	0.04
(Note 3)		Spaced	1	1.00	1.00	0.98	0.95	0.91	_
		De De	2	1.00	0.99	0.96	0.92	0.87	_
		<u> </u>	3	1.00	0.98	0.95	0.91	0.85	-
		Touching	,			11.	CT 11 4	21	
Vertical		2 0 225 mm	1	1.00	0.88	0.81	0.76	0.71	0.70
perforated cable tray	21		2	1.00	0.00	0.81	0.76	0.71	0.70
systems (Note 4)	31	Spaced	1	1.00	0.91	0.89	0.88	0.87	
(Truce 1)			2	1.00	0.91	0.88	0.87	0.85	
		225 mm De	2	1.00	0.51	0.66	0.67	0.63	
		Touching	1	0.97	0.84	0.78	0.75	0.71	0.68
Unperforated	30	@3333	2	0.97	0.83	0.76	0.72	0.68	0.63
cable tray systems	7.5	000000	3	0.97	0.82	0.75	0.71	0.66	0.61
systems		≥ 20 mm ≥ 300 mm	6	0.97	0.81	0.73	0.69	0.63	0.58
9		Touching	1		Se	e item 4 c	of Table 4	CI	
A			2	1.00	0.86	0.80	0.78	0.76	0.73
Cable ladder systems,	32	00000	3	1.00	0.85	0.79	0.76	0.73	0.70
cleats, wire	33	≥ 20 mm ≥ 300 mm	6	1.00	0.84	0.77	0.73	0.68	0.64
nesh tray,	34		*u		14				
(Note 3)		Spaced	1	1.00	1.00	1.00	1.00	1.00	_
		De O	2	1.00	0.99	0.98	0.97	0.96	_
e =		② ③ ③ ③ ≥ 20 mm	3	1.00	0.98	0.97	0.96	0.93	-

TABLE 4C5 – Rating factors for groups of one or more circuits of single-core cables to be applied to reference current-carrying capacity for one circuit of single-core cables in free air – Reference Method F in Tables 4D1A to 4J3A

Installat	ion Me	thod in Table 4A2	Number of trays		er of three per tray o		Use as a multiplier
matamat	IOH IVI	THOU IN TABLE 4A2	or ladders	1	2	3	to rating for
Perforated cable tray systems (Note 3)	31	Touching ○ ○ ○ ○ ○ ○ ≥ 300 mm ○ ○ ○ ○ ○ ○ ≥ 20 mm	1 2 3	0.98 0.96 0.95	0.91 0.87 0.85	0.87 0.81 0.78	Three cables in horizontal formation
Vertical perforated cable tray systems (Note 4)	31	Touching O ≥ O O O O O O O O O O O O O O O O O	1 2	0.96 0.95	0.86 0.84	-	Three cables in vertical formation
Cable ladder systems, cleats, wire mesh tray, etc. (Note 3)	32 33 34	Touching ≥ 300 mm 000000	1 2 3	1.00 0.98 0.97	0.97 0.93 0.90	0.96 0.89 0.86	Three cables in horizontal formation
Perforated systems (Note 3)	31	≥ 2D ₀ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1 2 3	1.00 0.97 0.96	0.98 0.93 0.92	0.96 0.89 0.86	
Vertical perforated cable tray systems (Note 4)	31	Spaced Spaced Spaced Spaced Spaced De	1 2	1.00	0.91 0.90	0.89	Three cables in trefoil formation
Cable ladder systems, cleats, wire mesh tray, etc. (Note 3)	32 33 34	≥ 2D _e → D _e ≥ 300 mm ≥ 20 mm	1 2 3	1.00 0.97 0.96	1.00 0.95 0.94	1.00 0.93 0.90	

Table 4D1A Single-Core 70 °C thermoplastic insulated cables, non – armoured, with or without sheath (Copper Conductors)

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C Conductor operating temperature: 70 °C

	conduit in	sed in thermally	Reference (enclosed on a wa	in conduit		Method C d direct)	(in fr	Ree air or on	leference M a perforated vertica	cable tray horiz	contal or
Conductor	insulating	wall etc.)	trunkin	g etc.)				Touching		Spaced by or	e diameter
cross- sectional area	2 cables, single- phase AC or	3 or 4 cables, three- phase	2 cables, single- phase AC or	3 or 4 cables, three- phase	2 cables, single- phase AC or DC	3 or 4 cables, three- phase AC	2 cables, single- phase AC or	3 cables, three- phase AC flat	3 cables, three- phase AC	2 cables, single or DC or 3 ca phase A	bles three-
	DC	AC	DC	AC	flat and touching	flat and touching or trefoil	DC flat	Achat	trefoil	Horizontal	Vertical
1	2	3	4	. 5	6	7	8.	9	10	11	12
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
1	11	10.5	13.5	12	15.5	14			-		-
1.5	14.5	13.5	17.5	15.5	20	18	-	1.0	-		1.00
2.5	20	18	24	21	27	25			-		-
4	26	24	32	28	37	33	-	-	-		
6	1 34	31	41	36	47	43	-	-		-	
10	46	42	57	50	65	59	-	- 0.	-	-	- 30
16	61	56	76	68	87	79	-	-		-	-
25	80	73	101	89	114	104	131	114	110	146	130
35	99	89	125	110	141	129	162	143	137	181	162
50	119	108	151	134	182	167	196	174	167	219	197
70	151	136	192	171	234	214	251	225	216	281	254
95	182	164	232	207	284	261	304	275	264	341	311
120	210	188	269	239	330	303	352	321	308	396	362
150	240	216	300	262	381	349	406	372	356	456	419
185	273	245	341	296	436	400	463	427	409	521	480
240	321	286	400	346	515	472	546	507	485	615	569
300	367	328	458	394	594	545	629	587	561	709	659
400	-		546	467	694	634	754	689	656	852	795
500	-		626	533	792	723	868	789	749	982	920
630	-	270	720	611	904	826	1005	905	855	1138	1070
800	-	-	-		1030	943	1086	1020	971	1265	1188
1000			-		1154	1058	1216	1149	1079	1420	1337

Table 4D1B

1000	800	630	500	400	300	240	185	150	120	95	70	50	35	25		16	10	6	4	2.5	1.5	-	(mm²)	-	area	ductor cross- sec- tional	Con-
0.042	0.053	0.068	0.086	0.105	0.145	0.180	0.23	0.29	0.36	0.46	0.63	0.93	1.25	1.75		2.8	4.4	7.3	=	18	29	4	(mV/ A/m)	2		cables,	
		0.094	0.110	0.130	0.160	0.195	0.25	0.31	0.39	0.49	0.65	0.95	1.30	1.80	-					_						Refere	
ý		0.25	0.26	0.26	0.26	0.26	0.27	0.27	0.27	0.28	0.29	0.30	0.31	0.33	×	2.8	4.4	7.3	=	18	29	44	(mV/A/m)	w		Reference Methods A & B (enclosed in conduit or trunking)	
		0.27	0.28	0.29	0.31	0.33	0.37	0.41	0.47	0.36	0.72	1.00	1.30	1.80	Z								*			in in iking)	
0.059	0.068	0.081	0.098	0.120	0.150	0.185	0.24	0.30	0.37	0.47	0.63	0.93	1.25	1.75	7			T							C C		2 cable
0.150	0.150	0.155	0.155	0.160	0.165	0.165	0.170	0.175	0.175	0.180	0.185	0.190	0.195	0.20	×	2.8	4.4	7.3	=	18	29	4	(mV/A/m)	4	Cables touching	Re (clipped	2 cables, single-phase AC
0.160	0.165	0.175	0.185	0.20	0.22	0.25	0.29	0.34	0.41	0.50	0.66	0.95	1.25	1.75	К								3		hing	ference N direct, o	ohase AC
0.050	0.061	0.076	0.093	0.115	0.150	0.185	0.24	0.29	0.37	0.47	0.63	0.93	1.25	1.75	7					_					C	Reference Methods C & F sed direct, on tray or in fre	
0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.26	0.26	0.26	0.27	0.27	0.28	0.28	0.29	×	2.8	4.4	7.3	Ξ	18	29	4	(mV/A/m)	Ch.	Cables spaced*	Reference Methods C & F (clipped direct, on tray or in free air)	
0.24	0.25	0.25	0.26	0.27	0.29	0.31	0.35	0.39	0.45	0.54	0.69	0.97	1.30	1.80	2								3		ed*	3	
		0.08	0.10	0.12	0.14	0.17	0.22	0.27	0.33	0.42	0.56	0.81	1.10	1.50	ч						Sec. 30		0			(enc	
,	1	0.22	0.22	0.22	0.23	0.23	0.23	0.23	0.23	0.24	0.25	0.26	0.27	0.29	×	2.4	3.8	6.4	9.5	15	25	38	(mV/A/m)	6		Reference Methods A & B (enclosed in conduit or trunking)	
		0.24	0.25	0.25	0.27	0.29	0.32	0.36	0.41	0.48	0.61	0.85	1.10	1.55	z											ethods onduit g)	
0.052	0.060	0.072	0.086	0.105	0.130	0.160	0.21	0.26	0.32	0.41	0.55	0.80	1.10	1.50	٦					_			_		Cables		
0.130	0.130	0.135	0.135	0.140	0.140	0.145	0.145	0.150	0.150	0.155	0.160	0.165	0.170	0.175	×	2.4	3.8	6.4	9.5	15	25	38	(mV/A/m)	7	Cables touching, Trefoil	1,0	3 or 4 cal
0.140	0.145	0.150	0.160	0.175	0.190	0.22	0.26	0.30	0.36	0.43	0.57	0.82	1.10	1.50	×										Trefoil	, clip	oles, th
0.052	0.060	0.072	0.086	0.105	0.130	0.160	0.21	0.26	0.32	0.41	0.55	0.80	1.10	1.50	н								(ii		Cables	Referenc ped direc	bles, three-phase AC
0.20	0.21	0.21	0.21	0.21	0.22	0.22	0.22	0.23	0.23	0.23	0.24	0.24	0.24	0.25	×	2.4	3.8	6.4	9.5	15	25	38	(mV/A/m)	00	Cables touching, Flat	Reference Methods C & F (clipped direct, on tray or in free air)	e AC
_	0.22	0.22	0.23	0.24	0.25	0.27	0.31	0.34	0.40	0.47	0.60	0.84	1.10	1.55	z					_	_			=	; Flat	or in fre	
0.044	0.053	0.066	0.081	0.100	0.130	0.160	0.21	0.26	0.32	0.40	0.55	0.80	1.10	1.50	7								(m		Cables	e air)	
0.28	0.28	0.28	0.29	0.29	0.29	0.29	0.30	0.30	0.30	0.31	0.31	0.32	0.32	0.32	×	2.4	3.8	6.4	9.5	15	25	38	(mV/A/m)	9	Cables spaced*, Flat		
0.28	0.29	0.29	0.30	0.31	0.32	0.34	0.36	0.40	0.44	0.51	0.63	0.86	1.15	1.55	8	4	9								Flat		

Table 4D2A Multicore 70 °C thermoplastic insulated and thermoplastic sheathed cables, non-armoured (Copper Conductors)

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C Conductor operating temperature: 70 °C

Conductor	(enclosed i	Method A n conduit in lating wall etc.)	(enclosed	ce Method B in conduit on a trunking etc.)	100000000000000000000000000000000000000	ce Method C I direct)	(in free perforate	ce Method E air or on a ed cable tray tal or vertical)
sectional area	1 two-core cable*, single-phase AC or DC	1 three-core cable* or 1 four-core cable, three- phase AC	1 two-core cable*, single-phase AC or DC	1 three-core cable* or 1 four-core cable, three- phase AC	1 two-core cable*, single-phase AC or DC	1 three-core cable* or 1 four-core cable, three- phase AC	I two-core cable*, single-phase AC or DC	1 three-core cable* or 1 four-core cable, three- phase AC
1	2	3	4	5	6	7	8	9
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
1	11	10	13	11.5	15	13.5	17	14.5
1.5	14	13	16.5	15	19.5	17.5	22	18.5
2.5	18.5	17.5	23	20	27	24	30	25
4	25	23	30	27	36	32	40	34
6	32	29	38	34	46	41	51	43
10	43	39	52	46	63	57	70	60
16	57	52	69	62	85	76	94	80
25	75	68	90	80	112	96	119	101
35	92	83	111	99	138	119	148	126
50	110	_ 99	133	118	168	144	180	153
70	139	125	168	149	213	184	232	196
95	167	150	201	179	258	223	282	238
120	192	172	232	206	299	259	328	276
150	219	196	258	225	344	299	379	319
185	248	223	294	255	392	341	434	364
240	291	261	344	297	461	403	514	430
300	334	298	394	339	530	464	593	497
400		_	470	402	634	557	715	597

VOLTAGE D	ROP (per amp	ere per metre	TABLE e):		Conductor o	perating temp	erature: 70
Conductor cross- sectional area	Two-core cable, DC		Two-core cable single-phase AC			e- or four-core three-phase AC	
1	2		3			4	
(mm ²)	(mV/A/m)		(mV/A/m)			(mV/A/m)	
1	44		44			38	
1.5	29		29			25	
2.5	18		18		1	15	
4	11		11			9.5	
6	7.3		_7.3			6.4	
10	4.4		4.4			3.8	
16	2.8		2.8			2.4	
	1 1	r	x	z	r	x	z
25	1.75	1.75	0.170	1.75	1.50	0.145	1.50
35	1.25	1.25	0.165	1.25	1.10	0.145	1.10
50	0.93	0.93	0.165	0.94	0.80	0.140	0.81
70	0.63	0.63	0.160	0.65	0.55	0.140	0.57
95	0.46	0.47	0.155	0.50	0.41	0.135	0.43
120	0.36	0.38	0.155	0.41	0.33	0.135	0.35
150	0.29	0.30	0.155	0.34	0.26	0.130	0.29
185	0.23	0.25	0.150	0.29	0.21	0.130	0.25
240	0.180	0.190	0.150	0.24	0.165	0.130	0.21
300	0.145	0.155	0.145	0.21	0.135	0.130	0.185
400	0.105	0.115	0.145	0.185	0.100	0.125	0.160

TABLE 4D3A – Single-core armoured 70 °C thermoplastic insulated cables (non-magnetic armour) (COPPER CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C

	Reference	Reference Method C				Ret	Reference Method F	hod F			
	(clipped direct)	direct)			(in free a	iir or on a perfo	rated cable	(in free air or on a perforated cable tray, horizontal or vertical)	or vertical)		
Conductor	Touching	hing		Touching				Spaced by one cable diameter	able diame	ter	
cross- sectional	2 cables, single- phase	3 or 4 cables,	2 cables, single- phase AC	3 cables, three- phase	3 cables, three- phase	2 cables, DC	, DC	2 cables, single-phase AC	les, ase AC	3 or 4 cables, three-phase AC	ables, se AC
	or DC	phase AC flat	or DC flat	AC flat	AC trefoil	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical

(mm²)

flat

B

A

285

231 A

(A)

(A) 229

(A)

(A) 217 272

A

A

=

594

567

719

429

373 425

777

731

772

721

737

TABLE 4D3B

2 cables, single-phase AC spaced*	spaced*	spaced*	spaced*	Reference Methods C & F (clipped direct, on tray or free air) spaced* trefoil and touching 4	Keterence Methods C & F (elipped direct, on tray or free air) spaced* trefoil and touching 4	Reference Methods C & F (clipped direct, on tray or free air) 3 or 4 cables, spaced* trefoil and touching flat and	Reference Methods C & F (clipped direct, on tray or free air) 3 or 4 cables, three-phase AC spaced* trefoil and touching flat and touching 6	Reference Methods C & F (clipped direct, on tray or free air) spaced* trefoil and touching 4
AC spaced* 4 (mV/A/m)	spaced* 4 nV/A/m)	spaced* 4 nV/A/m)	spaced* 4 nV/A/m)	spaced* trefoil and touching 4 trefoil (mV/A/m)	spaced* trefoil and touching 4 trefoil (mV/A/m)	spaced* trefoil and touching 4 trefoil (mV/A/m)	(clipped direct, on tray or free air) 3 or 4 cables, three-phase AC spaced* trefoil and touching flat and touching 4 5 (mV/A/m) (mV/A/m) (mV/A/m)	(clipped direct, on tray or free air) 3 or 4 cables, three-phase AC spaced* trefoil and touching flat and touching 4 5 (mV/A/m) (mV/A/m) (mV/A/m)
0 97	0.97	0.97	0.97	(clipped direct, on tray or free air) trefoil and touching 5 (mV/A/m) z r x z 0.80 0.190 0.82	(clipped direct, on tray or free air) trefoil and touching 5 (mV/A/m) z r x z 0.80 0.190 0.82	(clipped direct, on tray or free air) trefoil and touching 5 (mV/A/m) z r x z 0.80 0.190 0.82	(clipped direct, on tray or free air) 3 or 4 cables, three-phase AC trefoil and touching 5 (mV/A/m) 2 r x z r x z r x z r 0.80 0.190 0.82 0.79 0.26 0.84 0.79	(clipped direct, on tray or free air) 3 or 4 cables, three-phase AC trefoil and touching 5 (mV/A/m) 2 r x z r x z r x z r 0.80 0.190 0.82 0.79 0.26 0.84 0.79
	(clipped d	(clipped direct, on tra) trefoil and toucl frefoil and toucl (mV/A/m) r x 0.80 0.190 0.56 0.180	trefoil and touching fresoil and touching				3 or 4 cables, three-phase AC flat and touching 6 (mV/A/m) r x z r 0.79 0.26 0.84 0.79	3 or 4 cables, three-phase AC flat and touching 6 (mV/A/m) r x z r 0.79 0.26 0.84 0.79

TABLE 4D4A – Multicore armoured 70 °C thermoplastic insulated cables (COPPER CONDUCTORS)

Ambient temperature: 30 °C Ground ambient temperature: 20 °C Conductor operating temperature: 70 °C

CURRENT-CARRYING CAPACITY (amperes):

Conductor cross-sectional		Method C d direct)	(in free air or on	Method E a perforated cable intal or vertical)	(direct in groun	Method D d or in ducting in round buildings)
area	1 two-core cable, single-phase AC or DC	1 three- or four- core cable, three- phase AC	l two-core cable, single-phase AC or DC	I three- or four- core cable, three- phase AC	l two-core cable, single-phase AC or DC	1 three- or four- core cable, three phase AC
1	2	3	4	5	6	7
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)
1.5	21	18	22	19	22	18
2.5	28	25	31	26	29	24
4	38	33	41	35	37	30
6	49	42	53	45	46	38
10	67	58	72	62	60	50
16	89	77	97	83	78	64
25	118	102	128	110	99	82
35	145	125	157	135	119	98
50	175	151	190	163	140	116
70	222	192	241	207	173	143
95	269	231	291	251	204	169
120	310	267	336	290	231	192
150	356	306	386	332	261	217
185	405	348	439	378	292	243
240	476	409	516	445	336	280
300	547	469	592	. 510	379	316
400	621	540	683	590		2

Conductor operating temperature: 70 °C

TABLE 4D4B

VOLTAGE DROP (per ampere per metre):

95

120

150

185

240

300

400

0.46

0.36

0.29

0.23

0.180

0.145

0.105

0.47

0.38

0.30

0.25

0.190

0.155

0.115

Two-core Two-core cable, Three- or four-core cable, Conductor cross-sectional cable, DC single-phase AC three-phase AC area 1 3 4 (mm2) (mV/A/m) (mV/A/m)(mV/A/m) 1.5 29 29 25 2.5 18 15 18 4 9.5 11 11 6 7.3 7.3 6.4 10 3.8 4.4 4.4 16 2.8 2.8 2.4 x х \mathbf{z} 25 1.50 1.75 1.75 0.170 1.75 1.50 0.145 35 1.25 1.25 0.165 1.25 1.10 0.145 1.10 50 0.93 0.93 0.165 0.94 0.80 0.140 0.81 70 0.63 0.63 0.160 0.65 0.55 0.140 0.57

0.155

0.155

0.155

0.150

0.150

0.145

0.145

0.50

0.41

0.34

0.29

0.24

0.21

0.185

0.41

0.33

0.26

0.21

0.165

0.135

0.100

0.43

0.35

0.29

0.25

0.21

0.185

0.160

0.135

0.135

0.130

0.130

0.130

0.130

0.125

Table 4E1A

Single – Core 90 °C thermosetting insulated cables, non-armoured, With or without sheath (COPPER CONDUCTORS)

									A STATE OF THE PARTY OF THE PAR		
Conductor	Reference (enclosed thermally	Reference Method A (enclosed in conduit in thermally insulating wall etc.)	Reference Method B (enclosed in conduit on a wall or in trunking etc.)	Method B n conduit l or in g etc.)	Reference (clippe	Reference Method C (clipped direct)	Re (in free air c etc hor	Reference Method F ree air or on a perforated cabl etc horizontal or vertical etc) Touching	Reference Method F (in free air or on a perforated cable tray ett horizontal or vertical etc) Touching	Reference Method G (in free air) Spaced by one cable diameter	Method (be air) ced e diamete
cross- sectional area	2 cables, single- phase AC	3 or 4 cables, three-phase	2 cables, single- phase AC	3 or 4 cables, three-	2 cables, single-phase AC or DC	3 or 4 cables, three-phase	2 cables, single- phase AC	3 cables, three- phase AC	3 cables, three-phase AC trefoil	2 cables, single-phase AC or DC or 3 cables three-phase AC flat	e-phase A s three-pl flat
	or DC	AC	or DC	phase AC	flat and touching	AC flat and touching or trefoil	or DC flat	flat		Horizontal	Vertical
_	2	w	4	s	6	7	00	9	10	11	12
(mm²)	(A)	(A)	(A)	(3)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
1	14	13	17	15	19	17.5	*				
1.5	19	17	23	20	25	23					
2.5	26	23	<u>4</u>	28	34	31	r		r		,
4	35	31	42	37	46	41		,	•		,
6	45	40	54	48	59	54		1	ī	,	,
10	61	54	75	66	81	74	•			1.	
16	18	73	100	88	109	99					r
25	106	95	133	117	143	130	161	141	135	182	161
35	131	117	164	144	176	161	200	176	169	226	201
50	158	141	198	175	228	209	242	216	207	275	246
70	200	179	253	222	293	268	310	279	268	353	318
95	241	216	306	269	355	326	377	342	328	430	389
120	278	249	354	312	413	379	437	400	383	500	454
150	318	285	393	342	476	436	504	464	444	577	527
185	362	324	449	384	545	500	575	533	510	661	605
240	424	380	528	450	644	590	679	634	607	781	719
300	486	435	603	514	743	681	783	736	703	902	833
400			683	584	868	793	940	868	823	1085	1008
500			783	666	990	904	1083	998	946	1253	1169
630		,	900	764	1130	1033	1254	1151	1088	1454	1362
800		,			1288	1179	1358	1275	1214	1581	1485
1000					1443	1323	1520	1436	1349	1775	1671

Table 4E1B

500	Sew Marie	CHOILION		_	300		1 33.0	150	120	95	70	50	35	25	_	16	10	6	4	2.5	1.5	-	(mm²)	1	area		ductor	Con-
0,000	0056	0.072	0.093	0.120	0.155	0.190	0.25	0.32	0.39	0.49	0.68	0.99	1.35	1.85	_	2.9	4.7	7.9	12	19	31	46	(mV/ A/m)	2		cables,	,	
		0.100	0.120	0.140	0.175	0.21	0.27	0.33	0.41	0.51	0.70	1.00	1.35	1.85	٦								(1			Met (e condu		
		0.25	0.25	0.25	0.25	0.26	0.26	0.26	0.26	0.27	0.28	0.29	0.29	0.31	×	2.9	4.7	7.9	12	19	31	46	(mV/A/m)	w		Methods A & B (enclosed in conduit or trunking)	Reference	
		0.27	0.28	0.29	0.31	0.33	0.37	0.43	0.48	0.58	0.75	1.05	1.35	1.90	N					_						ing)		
	0.072	0.086	0.105	0.130	0.160	0.20	0.26	0.32	0.39	0.49	0.68	0.99	1.35	1.85	7								0		Cab			2 cables
	0.150	0.155	0.155	0.155	0.160	0.160	0.165	0.165	0.165	0.170	0.175	0.180	0.180	0.190	×	2.9	4.7	7.9	12	19	31	46	(mV/A/m)	4	Cables touching	clipped o		2 cables, single-phase AC
	0.170	0.175	0.185	0.20	0.22	0.25	0.30	0.36	0.43	0.52	0.71	1.00	1.35	1.85	N										gni	Method firect, or	1	phase A
	0.064	0.078	0.098	0.125	0.155	0.195	0.25	0.32	0.39	0.49	0.68	0.99	1.35	1.85	н										B	Keterences Methods C, F & G (clipped direct, on tray or in free air)	0.0000000000000000000000000000000000000	[3
	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.26	0.26	0.27	0.27	0.28	×	2.9	4.7	7.9	12	19	31	46	(mV/A/m)	Sı	Cables spaced*	in free air		
	0.25	0.25	0.26	0.27	0.29	0.31	0.36	0.41	0.47	0.56	0.73	1.00	1.35	1.85	7										* b	9		
		0.088	0.100	0.125	0.150	0.185	0.23	0.29	0.35	0.44	0.60	0.87	1.15	1.60	н					- ED			(1			(e condu	Refer	
		0.21	0.22	0.22	0.22	0.22	0.23	0.23	0.23	0.23	0.24	0.25	0.25	0.27	×	2.5	4.0	6.8	10	16	27	40	(mV/A/m)	6		A & B (enclosed in conduit or trunking)	Reference Methods	
		0.23	0.24	0.25	0.27	0.29	0.32	0.37	0.42	0.50	0.65	0.90	1.15	1.65	N								Ŭ			in king)	thods	
0.055	0.062	0.074	0.090	0.110	0.140	0.170	0.22	0.28	0.34	0.43	0.59	0.86	1.15	1.60	-								_		Cables			
-	0.130	0.135	0.135	0.135	0.140	0.140	0.140	0.140	0.140	0.145	0.150	0.155	0.155	0.165	×	2.5	4.0	6.8	10	16	27	40	(mV/A/m)	7	Cables touching, Trefoil			3 or 4
2 1 2	0.145	0.150	0.160	0.175	0.195	0.22	0.26	0.31	0.37	0.45	0.61	0.87	1.15	1.60	N						_		0		Trefoil	(clip)		cables, t
0000	0.059	0.071	0.088	0.110	0.135	0.170	0.22	0.28	0.34	0.43	0.59	0.86	1.15	1.60	н								0		Cable	Meth ped direc		3 or 4 cables, three-phase AC
231.0	0.155	0.160	0.160	0.160	0.160	0.165	0.165	0.165	0.165	0.170	0.175	0.180	0.180	0.190	×	2.5	4.0	6.8	10	16	27	40	(mV/A/m)	∞	Cables touching, Flat	Keterence Methods C, F & G direct, on tray or in		se AC
2210	0.165	0.170	0.180	0.195	0.21	0.24	0.28	0.32	0.38	0.46	0.62	0.87	1.15	1.60	8										g, Flat	Keterence Methods C, F & G (clipped direct, on tray or in free air)		
200	0.055	0.068	0.085	0.110	0.135	0.170	0.22	0.28	0.34	0.43	0.59	0.86	1.15	1.60	-					_			_		Cable	ee air)		
2	0.23	0.23	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.25	0.25	0.26	0.26	0.27	×	2.5	4.0	6.8	10	16	27	40	(mV/A/m)	9	Cables spaced*, Fl at			
2	0.24	0.24	0.25	0.26	0.27	0.29	0.33	0.37	0.42	0.49	0.65	0.89	1.20	1.65	N								ت		* Flat			

TABLE 4E2A – Multicore 90 °C thermosetting insulated and thermoplastic sheathed cables, non-armoured (COPPER CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C Conductor operating temperature: 90 °C

Conductor	(enclosed in thermally in	Method A n conduit in sulating wall c.)		Method B conduit on a unking etc.)		Method C d direct)	Reference (free air or or cable tray etc. vert	n a perforated horizontal or
sectional area	1 two-core cable*, single-phase AC or DC	l three- or four-core cable*, three-phase AC	1 two-core cable*, single-phase AC or DC	I three- or four-core cable*, three-phase AC	1 two-core cable*, single-phase AC or DC	l three- or four-core cable*, three-phase AC	1 two-core cable*, single-phase AC or DC	1 three- or four-core cable*, three-phase AC
1	2	3	4	5	6	7	8	9
(mm ²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
I	14.5	13	17	15	19	17	21	18
1.5	18.5	16.5	22	19.5	24	22	26	23
2.5	25	22	30	26	33	30	36	32
4	33	30	40	35	45	40	49	42
6	42	38	51	44	58	52	63	54
10	57	51	69	60	80	71	86	75
16	76	68	91	80	107	96	115	100
25	99	89	119	105	138	119	149	127
35	121	109	146	128	171	147	185	158
50	145	130	175	154	209	179	225	192
70	183	164	221	194	269	229	289	246
95	220	197	265	233	328	278	352	298
120	253	227	305	268	382	322	410	346
150	290	259	. 334	300	441	371	473	399
185	329	295	384	340	506	424	542	456
240	386	346	459	398	599	500	641	538
300	442	396	532	455	693	576	741	621
400		-	625	536	803	667	865	741

Table 4E2B

VOLTAGE DROP (per ampere per metre): Conductor operating temperature: 90 °C Three- or four-core cable, three-phase AC Conductor cross-Two-core Two-core cable, single-phase AC sectional cable, DC area 1 3 2 4 (mV/A/m) (mm²)(mV/A/m) (mV/A/m) 1 46 46 40 1.5 31 31 27 2.5 19 19 16 4 12 12 10 6 7.9 7.9 6.8 10 4.7 4.7 4.0 16 2.9 2.9 2.5 r X Z 25 1.85 1.85 0.160 1.90 1.60 0.140 1.65 35 1.35 1.35 0.155 1.35 1.15 0.135 1.15 50 0.98 0.99 0.155 0.86 0.135 0.87 1.00 70 0.60 0.67 0.150 0.69 0.59 0.130 0.67 95 0.49 0.150 0.130 0.45 0.50 0.52 0.43 120 0.39 0.40 0.145 0.42 0.34 0.130 0.37 150 0.31 0.32 0.145 0.35 0.28 0.125 0.30 185 0.25 0.26 0.145 0.29 0.22 0.125 0.26 240 0.195 0.200 0.140 0.24 0.175 0.125 0.21 300 0.155 0.160 0.140 0.21 0.140 0.120 0.185 400 0.120 0.130 0.140 0.190 0.115 0.120 0.165

TABLE 4E3A – Single-core armoured 90 °C thermosetting insulated cables (non-magnetic armour) (COPPER CONDUCTORS)

CURRENT-CARRYING

conductor operation

	Reference (clip	Reference Method C (clipped direct)			(in free ai	Reference Method F (in free air or on a perforated cable tray, horizontal or vertical)	Reference Method F erforated cable tray, l	d F y, horizontal o	r vertical)		
Conductor	Touc	Touching	Touching	ing			Spa	Spaced by one cable diameter	ble diameter		
cross- sectional	2 cables, single-	3 or 4 cables,	2 cables, single-	3 cables, three-	3 cables, three-	2 cables, DC	s, DC	2 cables, single-phase AC	igle-phase	3 or 4 cables, three- phase AC	es, three- AC
area	phase AC or DC flat	three- phase AC flat	phase AC or DC flat	phase AC flat	phase AC trefoil	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
-	2	3	4	5	6	7	80	9	10	=	12
(mm ²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
50	237	220	253	232	222	284	270	282	266	288	266
70	303	277	322	293	285	356	349	357	337	358	331
95	367	333	389	352	346	446	426	436	412	425	393
120	425	383	449	405	402	519	497	504	477	485	449
150	488	437	516	462	463	600	575	566	539	549	510
185	557	496	587	524	529	688	660	643	614	618	574
240	656	579	689	612	625	815	782	749	714	715	666
300	755	662	792	700	720	943	906	842	805	810	755
400	853	717	899	767	815	1137	1094	929	889	848	797
500	962	791	1016	851	918	1314	1266	1032	989	923	871
630	1082	861	1146	935	1027	1528	1474	1139	1092	992	940
800	1170	904	1246	987	1119	1809	1744	1204	1155	1042	978
1000	1261	961	1345	1055	1214	2100	2026	1289	1238	1110	1041

Table 4E3B

Conductor cross-	2 cables,							Reference Methods C & F (clipped direct, on tray or in free air)	Reference Methods C & F ped direct, on tray or in fre	C&F r in free air)	0					
sectional	DC		2	cables, sin	2 cables, single-phase AC	()					3 or 4 ca	3 or 4 cables, three-phase AC	phase AC			
			touching			spaced*		tref	trefoil and touching	ung	fla	flat and touching	ng	fl	flat and spaced*	*
-	2		y,			4			(S)			6			7	
(mm²)	(mV/		(mV/A/m)			(mV/A/m)			(mV/A/m)			(mV/A/m)			(mV/A/m)	
	A/m)				1											
		7	×	Z	7	×	Z	7	×	N	7	×	Z	7	×	Z
50	0.98	0.99	0.21	1.00	0.98	0.29	1.00	0.86	0.180	0.87	0.84	0.25	0.88	0.84	0.33	0.90
70	0.67	0.68	0.200	0.71	0.69	0.29	0.75	0.59	0.170	0.62	0.60	0.25	0.65	0.62	0.32	0.70
95	0.49	0.51	0.195	0.55	0.53	0.28	0.60	0.44	0.170	0.47	0.46	0.24	0.52	0.49	0.31	0.58
								20								
120	0.39	0.41	0.190	0.45	0.43	0.27	0.51	0.35	0.165	0.39	0.38	0.24	0.44	0.41	030	0.51
150	0.31	0.33	0.185	0.38	0.36	0.27	0.45	0.29	0.160	0.33	0.31	0.23	0.39	0.34	0.29	0.45
185	0.25	0.27	0.185	0.33	0.30	0.26	0.40	0.23	0.160	0.28	0.26	0.23	0.34	0.29	0.29	0.41
240	0.195	0.21	0.180	0.28	0.24	0.26	0.35	0.180	0.155	0.24	0.21	0.22	0.30	0.24	0.28	0.37
300	0.155	0.170	0.175	0.25	0.195	0.25	0.32	0.145	0.150	0.21	0.170	0.22	0.28	0.20	0.27	0.34
400	0.115	0.145	0.170	0.22	0.180	0.24	0.30	0.125	0.150	0.195	0.160	0.21	0.27	0.20	0.27	0.33
500	0.093	0.125	0.170	0.21	0.165	0.24	0.29	0.105	0.145	0.180	0.145	0.20	0.25	0.190	0.24	0.31
630	0.073	0.105	0.165	0.195	0.150	0.23	0.27	0.092	0.145	0.170	0.135	0.195	0.24	0.175	0.23	0.29
800	0.056	0.090	0.160	0.190	0.145	0.23	0.27	0.086	0.140	0.165	0.130	0.180	0.23	0.175	0.195	0.26
1000	0.045	0.092	0.155	0.180	0.140	0.21	0.25	0.080	0.135	0.155	0.125	0.170	0.21	0.165	0.180	0.24

TABLE 4E4A – Multicore armoured 90 °C thermosetting insulated cables (COPPER CONDUCTORS)

Air ambient temperature: 30 °C

Ground ambient temperature: 20 °C

CURRENT-CARRYING CAPACITY (amperes):

Conductor operating temperature: 90 °C

Conductor cross-sectional		Method C d direct)	(in free air or on	Method E a perforated cable ental or vertical)	(direct in groun	Method D d or in ducting in round buildings)
area	1 two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three-phase AC	1 two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three-phase AC	1 two-core cable, single-phase AC or DC	l three- or l four- core cable, three-phase AC
1	2	3	4	5	6	7
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)
1.5	27	23	29	25	25	21
2.5	36	31	39	33	33	28
4	49	42	52	44	43	36
6	62	. 53	66	56	53	44
10	85	73	90	78	71	58
16	110	94	115	99	91	75
25	146	124	152	131	116	96
35	180	154	188	162	139	- 115
50	219	187	228	197	164	135
70	279	238	291	251	203	167
95	338	289	354	304	239	197
120	392	335	410	353	271	223
150	451	386	472	406	306	251
185	515	441	539	463	343	281
240	607	520	636	546	395	324
300	698	599	732	628	446	365
400	787	673	847	728		

TABLE 4E4B

VOLTAGE DROP (per ampere per metre):

Conductor operating temperature: 90 °C

Conductor cross- sectional area	Two-core cable, DC		Two-core cable single-phase A			e- or four-core three-phase A	1,070
1	2		3		(1 ×	4	
(mm²)	(mV/A/m)		(mV/A/m)			(mV/A/m)	
1.5	31		31			27	
2.5	19		19		l	16	
4	12		12			10	
6	7.9		7.9			6.8	
10	4.7		4.7			4.0	
16	2.9		2.9			2.5	
	1	r	x	z	r	x	z
25	1.85	1.85	0.160	1.90	1.60	0.140	1.65
35	1.35	1.35	0.155	1.35	1.15	0.135	1.15
50	0.98	0.99	0.155	1.00	0.86	0.135	0.87
70	0.67	0.67	0.150	0.69	0.59	0.130	0.60
95	0.49	0.50	0.150	0.52	0.43	0.130	0.45
120	0.39	0.40	0.145	0.42	0.34	0.130	0.37
150	0.31	0.32	0.145	0.35	0.28	0.125	0.30
185	0.25	0.26	0.145	0.29	0.22	0.125	0.26
240	0.195	0.20	0.140	0.24	0.175	0.125	0.21
300	0.155	0.16	0.140	0.21	0.140	0.120	0.185
400	0.120	0.13	0.140	0.190	0.115	0.120	0.165

TABLE 4H1A – Single-core 70 °C thermoplastic insulated cables, non-armoured, with or without sheath (ALUMINIUM CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes):

	Reference	Reference Method A	Reference Method B	Method B	Reference	Reference Method C	1.0	R	Reference Method F	thod F	
	(encl	(enclosed in	(enclosed	(enclosed in conduit	(clippe	(clipped direct)	(in free	(in free air on a perforated	rated cable t	cable tray, horizontal or vertical)	_
ductor	conduit ir	conduit in thermally insulating wall etc.)	on a wall or ir trunking etc.)	on a wall or in trunking etc.)		9		Touching		Spaced by one diameter	9
cross- sectional	2 cables, single- phase AC	3 or 4 cables,	2 cables, single- phase	3 or 4 cables,	2 cables, single- phase	3 or 4 cables,	2 cables, single- phase	3 cables, three- phase AC	3 cables, three- phase AC	2 cables, single-phase AC or DC or 3 cables three-phase AC flat	in
S. S	or DC	phase AC	AC or DC	phase AC	AC or DC flat and touching	phase AC flat and touching or trefoil	AC or DC flat	flat	trefoil	Horizontal	
1	2	w	4	5	6	7	8	9	· 10	П	
(mm²)	(À)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	
50	93	84	118	104	125	110	149	133	128	169	
70	118	107	150	133	160	140	192	173	166	217	
95	142	129	181	161	195	170	235	212	203	265	
120	164	149	210	186	226	197	273	247	237	308	
150	189	170	234	204	261	227	316	287	274	356	
185	215	194	266	230	298	259	363	330	316	407	
240	252	2	312	269	352	305	430	392	375	482	
240	289	177		306	406	351	497	455	434	557	
300	-	261	358	352	511	472	543	502	507	625	
300		261	413	405	591	546	629	582	590	726	
300	1	261	413 477	462	679	626	722	669	680	837	
300 380 480 600	.	261	358 413 477 545		771	709	820	761	776	956	
300 300 380 480 600		261	358 413 477 545		900	823	953	886	907	1125	

TABLE 4H1B

VOLTAGE DROP (per ampere per metre):

Conductor operating temperature: 70 °C

	cross- sectional	area	1	(mm ²)		50	70	95	120	150	185	240	300	380	480	600	740	960	
	2 cables, DC		2	(mV/A/m)		1.55	1.05	0.77	0.61	0.49	0.39	0.30	0.24	0.190	0.150	0.120	0.099	0.075	0000
	Refere			_	T	1.60	1.10	0.81	0.64	0.51	0.42	0.32	0.26	0.22	0.18	0.150	1	•	34/.
	Reference Methods A & B (enclosed in conduit or trunking)	96	w	(mV/A/m)	×	0.30	0.30	0.29	0.29	0.28	0.28	0.27	0.27	0.27	0.26	0.26		•	
	ds A & B in nking)			٦	2	1.60	1.15	0.86	0.70	0.59	0.50	0.42	0.37	0.35	0.32	0.30	r	×	
2 cable		0			4	1.55	1.05	0.77	0.61	0.49	0.40	0.30	0.24	0.195	0.155	0.130	0.105	0.086	0.074
2 cables, single-phase AC	Re (clipped	Cables touching	4	(mV/A/m)	×	0.190	0.185	0.185	0.180	0.175	0.175	0.170	0.170	0.165	0.165	0.160	0.160	0.155	0.155
hase AC	ference 1 direct, o	hing		n)	z	1.55	1.05	0.79	0.64	0.52	0.43	0.35	0.30	0.26	0.23	0.21	0.190	0.180	0.170
	Reference Methods C & F ped direct, on tray or in fre	_			4	1.55	1.05	0.77	0.61	0.49	0.39	0.30	0.24	0.195	0.155	0.125	0.100	0.082	0 068
	Reference Methods C & F (elipped direct, on tray or in free air)	Cables spaced*	S	(mV/A/m)	×	0.28	0.27	0.27	0.27	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.25	0.24	0.24
		ced*		n)	2	1.55	1.10	0.82	0.67	0.55	0.47	0.40	0.35	0.32	0.29	0.28	0.27	0.26	0.25
	Referen	_	y	_	-	1.35	0.94	0.70	0.55	0.45	0.36	0.28	0.23	0.190	0.155	0.125		r	
	Reference Methods A & B (enclosed in conduit or trunking)		6	(mV/A/m)	×	0.26	0.26	0.25	0.25	0.24	0.24	0.24	0.23	0.23	0.23	0.22		٠	
	b A & B n king)	3		1)	Z	1.40	0.97	0.74	0.61	0.51	0.44	0.37	0.32	0.30	0.27	0.26	r		
		Cable		0	7	1.35	0.91	0.67	0.53	0.42	0.34	0.26	0.21	0.170	0.140	0.110	0.094	0.077	0.066
3 0		Cables touching, Trefoil	7	(mV/A/m)	×	0.165	0.160	0.160	0.155	0.155	0.150	0.150	0.145	0.145	0.140	0.140	0.135	0.135	0.135
3 or 4 cables,	(cl	Trefoil			N	1.35	0.92	0.69	0.55	0.45	0.37	0.30	0.26	0.22	0.195	0.180	0.165	0.155	0.150
three-phase AC	Referen	Cable		()	7	1,35	0.91	0.67	0.53	0.42	0.34	0.26	0.21	0.170	0.140	0.110	0.094	0.077	0.066
ise AC	Reference Methods C & F ped direct, on tray or in fre	Cables touching, Flat	00	(mV/A/m)	×	0.24	0.24	0.23	0.23	0.23	0.23	0.22	0.22	0.22	0.22	0.22	0.21	0.21	0.21
	Reference Methods C & F (clipped direct, on tray or in free air)	g, Flat			2	1.35	0.94	0.71	0.58	0.48	0.41	0.35	0.31	0.28	0.26	0.24	0.23	0.22	0.22
	e air)	Cab			٦	1.35	0.91	0.67	0.53	0.42	0.34	0.26	0.21	0.170	0.135	0.110	0.089	0.071	0.059 0.28
	1	Cables spaced*, Flat	9	(mV/A/m)	×	0.32	0.31	0.31	0.31	0.30	0.30	0.30	0.30	0.29	0.29	0.29	0.29	0.29	0.28
		*, Flat		٥	2	1.40	0.96	0.74	0.61	0.52	0.46	0.40	0.36	0.34	0.32	0.31	0.30	0.29	0.29

TABLE 4H2A – Multicore 70 °C thermoplastic insulated and thermoplastic sheathed cables, non-armoured (ALUMINIUM CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C Conductor operating temperature: 70 °C

300	240	185	150	120	95	70	50	35	25	16	(mm²)	-	sectional area	Conductor cross-
()	*		•	•	130	108	86	71	58	44	(A)	2	1 two-core cable, single- phase AC or DC	Refer (enclosed ir insuk
237	207	176	155	135	118	98	78	65.	53	41	(A)	3	1 three- or four-core cable, three-phase AC	Reference Method A (enclosed in conduit in thermally insulating wall etc.)
i.		ı	C		157	131	104	86	71	54	(<	4	1 two-core cable, single- phase AC or DC	Reference (enclosed in c or in tru
265	232	199	176	160	139	116	92	77	62	48	(A)	5	I three- or four-core cable, three- phase AC	Reference Method B (enclosed in conduit on a wall or in trunking etc.)
ı	ı	1	,	-	195	160	125	103	83	66	(%)	6	I two-core cable, single- phase AC or DC	Reference Meth (clipped direct)
351	305	259	227	197	170	140	110	90	73	59	(A)	7	I three- or four-core cable, three- phase AC	Reference Method C (clipped direct)
r	ı	X.	1	,	210	173	135	III	89	73	(A)	8	1 two-core cable, single-phase AC or DC	Reference Method E (in free air or on a perforate) tray etc, horizontal or vertical)
381	330	280	245	212	183	150	117	96	78	61	(3)	9	I three- or four-core cable, three-phase AC	Reference Method E (in free air or on a perforated cable tray etc, horizontal or vertical)

Table 4H2B

VOLTAGE DROP (per ampere per metre):

Conductor operating temperature: 70 °C

Conductor cross- sectional area	Two-core cable, DC		Two-core cable, single-phase AC		Thre	ee- or four-core of three-phase AC	
1	2		3			4	
(mm ²)	(mV/A/m)		(mV/A/m)		1	(mV/A/m)	
16	4.5		4.5			3.9	
		r	×	z	r	x	z
25	2.9	2.9	0.175	2.9	2.5	0.150	2.5
35	2.1	2.1	0.170	2.1	1.80	0.150	1.80
50	1.55	1.55	0.170	1.55	1.35	0.145	1.35
70	1.05	1.05	0.165	1.05	0.90	0.140	0.92
95	0.77	0.77	0.160	0.79	0.67	0.140	0.68
120	- 1	-	-		0.53	0.135	0.55
150		-	•	-	0.42	0.135	0.44
185			*		0.34	0.135	0.37
240	-	-	-		0.26	0.130	0.30
300				-	0.21	0.130	0.25

TABLE 4H3A – Single-core armoured 70 °C thermoplastic insulated cables (non-magnetic armour) (ALUMINIUM CONDUCTORS)

	(in free air	r or on a perfo	rated cable	tray, horizonta	d or vertica	J	
Touching		-	S	paced by one o	able diame	ter	
w	3 cables, three-	2 cable	s, DC	2 cab single-ph	les, ase AC	3 or 4 cables, three-phase AC	ables, ase AC
	phase AC trefoil	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertica
5	6	7	∞	9	10	=	12
(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
200	131	167	157	168	159	169	. 155
4 178	168	214	202	212	200	213	196
4 214	205	261	247	259	245	255	236
0 246	238	303	288	299	285	293	272
0 282	275	349	333	340	323	335	312
2 319	315	400	382	389	371	379	354
3 374	372	472	452	457	437	443	415
4 427	430	545	523	520	498	505	475
3 479	497	638	613	583	559	551	518
6 534	568	742	715	655	629	604	568
2 589	642	859	828	724	696	656	618
9 642	715	986	952	802	770	707	666
8 706	808	1171	1133	866	832	770	726
	Touching 2 cables, 3 cables, single- three-phase AC or AC flat DC flat DC flat CA) (A) (A) 152 141 194 178 234 214 270 246 310 282 352 319 413 374 474 427 543 479 616 534 692 589 769 642	Touching 3 cables, three-phase AC flat 5 (A) 1141 178 214 246 282 319 374 427 479 534 589 642 706	Touching 3 cables, three-phase AC flat (A) 1141 178 214 246 282 319 374 427 479 534 589 642 706	Touching Touching 3 cables, 3 cables, three-phase AC flat (A)	Touching three-ince air or on a perforated cable three-phase AC flat trefoil 4. AC 1.31 1.67 1.57 1.78 1.68 2.14 2.02 2.14 2.05 2.61 2.47 2.72 4.52 3.74 3.72 4.72 4.52 3.70 6.88 1.171 1.133 1.70 1.133 1.70 1.131 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.7	Touching three-increments of the air or on a perforated cable three-phase has been for the air or on a perforated cable three-phase has been for a perforated cable three-phase has been for a perforated cable three-phase has been for a perforated vertical AC flat AC	Touching Spaced by one cables, three-three-phase AC AC AC AC AC AC AC A

TABLE 4H3B

VOLTAGE DROP (per ampere per metre):

Conductor operating temperature: 70 °C

1200	960	740	600	480	380		300	240	185	150	120	95	70	50		(mm²)	-		sectional	Conductor cross-
0.060	0.075	0.097	0.120	0.150	0.190	0.007	0 24	0.30	0.39	0.49	0.61	0.77	1.05	1.55		(mV/ A/m)	2		DC	2 cables,
0110	0.115	0.135	0.150	0.180	0.22	0.4.0	0.26	0.32	0.41	0.50	0.62	0.78	1.05	1.55	73					
0.155	0.160	0.170	0.175	0.180	0.185	0,100	0 185	0.190	0.195	0.20	0.21	0.21	0.22	0.23	×	(mV/A/m)	3	touching		
0.190	0.200	0.22	0.23	0.25	0.28	4.04	0 32	0.37	0.45	0.54	0.66	0.81	1.10	1.55	2			W-017	2 cables, single-phase AC	
0.160	0.165	0.180	0.195	0.22	0.26	0.20	0.28	0.34	0.44	0.53	0.65	0.81	1.05	1,55	٦				ngle-phase A	
0 180	0.21	0.23	0.24	0.25	0.25	0.10	026	0.27	0.28	0.28	0.29	0.29	0.30	0.31	×	(mV/A/m)	4	spaced*	6	
0.24	0.27	0.29	0.31	0.33	0.36	0.55	0.39	0.44	0.52	0.60	0.71	0.86	1.10	1.55	Z					
0.004	0.100	0.115	0.130	0.155	0.185	0.44	022	0.28	0.35	0.44	0.54	0.68	0.92	1.35	4			tred		(clipped dir
0 140	0.140	0.145	0.150	0.155	0.155	0.100	0 160	0.165	0.170	0.175	0.180	0.185	0.190	0.195	×	(mV/A/m)	S	trefoil and touching		(clipped direct, on tray or in free air)
0 170	0.175	0.185	0.200	0.22	0.24	,	0 27	0.32	0.39	0.47	0.57	0.70	0.93	1.35	Z			hing		or in free air
0 145	0.150	0.160	0.170	0.195	0.22	0.24	0 24	0.30	0.38	0.46	0.57	0.70	0.93	1.35	7			flar	3 or 4 ca	
0 160	0.185	0.20	0.21	0.22	0.22	0.40	0.23	0.23	0.24	0.24	0.25	0.25	0.26	0.27	×	(mV/A/m)	6	flat and touching	3 or 4 cables, three-phase AC	
0 22	0.24	0.26	0.27	0.29	0.32	0.57	0.34	0.38	0.45	0.52	0.62	0.75	0.96	1.35	Z			e e	hase AC	
0.185	0.190	0.200	0.21	0.24	0.27	0.20	0.28	0.33	0.42	0.50	0.60	0.73	0.95	1.30	٦			fL		
0.165	0.195	0.22	0.24	0.25	0.26	0.00	0.29	0.29	0.30	0.31	0.32	0.32	0.33	0.34	x	(mV/A/m)	7	flat and spaced*		
0.25	0.27	0.30	0.32	0.35	0.38		0.40	0.44	0.51	0.58	0.68	0.80	1.00	1.35	N			4		2

TABLE 4H4A – Multicore armoured 70 °C thermoplastic insulated cables (ALUMINIUM CONDUCTORS)

Air Ambient temperature: 30 °C Ground Ambient temperature: 20 °C Conductor operating temperature: 70 °C

CURRENT-CARRYING CAPACITY (amperes):

Conductor cross-		Method C d direct)	(in free air or on	Method E a perforated cable ntal or vertical).	(direct in ground	Method D d or in ducting in ound buildings)
sectional area	l two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three- phase AC	1 two-core cable, single-phase AC or DC	1 three- or 1 four-core cable, three-phase AC	1 two-core cable, single-phase AC or DC	1 three- or 1 four core cable, three- phase AC
1	2	3	4	5	6	- 7
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)
16	68	58	71	61	,	
25	89	76	94	80	77	64
35	109	94	115	99	93	77
50	131	113	139	119	109	91
70	165	143	175	151	135	112
95	199	174	211	186	159	132
120		202		216		150
150	발	232	92	250	2	169
185		265		287		190
240		312		342		218
300	E .	360	~	399	5	247

Table 4H4B

VOLTAGE DROP (per ampere per metre):

Conductor operating temperature: 70 °C

Conductor cross- sectional area	Two-core cable, DC		Two-core cable, single-phase AC		Thre	e- or four-core of three-phase AC	
1	2		3			4	
(mm ²)	(mV/A/m)		(mV/A/m)	,		(mV/A/m)	
16	4.5		4.5		l	3.9	
		r	x	z	r	x	z
25	2.9	2.9	0.175	2.9	2.5	0.150	2.5
35	2.1	2.1	0.170	2.1	1.80	0.150	1.80
50	1.55	1.55	0.170	1.55	1.35	0.145	1.35
70	1.05	1.05	0.165	1.05	0.90	0.140	0.92
95	0.77	0.77	0.160	0.79	0.67	0.140	0.68
120	- 1		-		0.53	0.135	0.55
150		100	-		0.42	0.135	0.44
185	-	-	-		0.34	0.135	0.37
240		(i+)	•		0.26	0.130	0.30
300	-	82			0.21	0.130	0.25

TABLE 4J1A - Single-core 90 °C thermosetting insulated cables, non-armoured,

	CURRENT-CARRYING CAPACITY (amperes):
IUM CONDUCT	

	Reference (enclosed in thermall	Reference Method A (enclosed in conduit in thermally insulating	Reference Method B (enclosed in conduit on a wall or in trunking	Reference Method B (enclosed in conduit n a wall or in trunking	Reference (clippe	Reference Method C (clipped direct)	Ref (in free air tray hori	Reference Method F (in free air or on a perforated cable tray horizontal or vertical etc.)	od F orated cable ical etc.)	Reference Method G (in free air)	Metho e air)
Conductor	wall	wall etc.)	etc.)	ع				Touching		Spaced by one cable diameter	one ca eter
cross- sectional area	2 cables, single- phase AC	3 or 4 cables,	2 cables, single- phase	3 or 4 cables,	2 cables, single- phase	3 or 4 cables,	2 cables, single- phase AC	3 cables, three-phase AC flat	3 cables, three-phase AC trefoil	2 cables, single-phase AC or DC or 3 cables three-phase AC flat	igle-pl ir 3 ca
	or DC	phase AC	AC or DC	phase AC	AC or DC flat and touching	phase AC flat and touching or trefoil	or DC flat			Horizontal	Vertical
pica	2	٠.	4	5	6	7	∞	9	10	=	12
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
50	125	113	157	140	154	136	184	165	159	210	188
95	191	171	242	217	241	211	289	264	253	332	300
120	220	197	281	251	280	245	337	308	296	387	351
150	253	226	307	267	324	283	389	358	343	448	408
185	288	256	351	300	371	323	447	413	395	515	470
240 300	338	300 344	412 471	351 402	439 508	382 440	530 613	492 571	471 544	708	561 652
380					658	594	679	628	638	798	742
480	,	ű.			765	692	786	728	743	927	865
600		×	¥		871	791	903	836	849	1058	990
2000	6.	r	r	ŭ.	1001	911	1025	951	979	1218	1143
740		S(0)	(a) (6)		1176	1072	1191	1108	1151	1440	1355

TABLE 4J1B

	960	740	600	480	380	300	240	185	150	120	ì	20	70	50		(mm²)	-	area	ductor cross- sec- tional	Con-
0000	0.080	0.105	0.130	0.160	0.20	0.26	0.32	0.42	0.53	0.65	0.00	0.82	1.13	1.65		(mV/A/m)	2		2 cables, DC	
		£:	90	٠,		0.28	0.34	0.45	0.54	0.68	0.00	086	1.17	1.70	7				Refe cond	
•		ē	2.00			0.27	0.27	0.28	0.28	0.29	9	0.29	0.30	0.30	×	(mV/A/m)	w		Reference Methods A & B (enclosed in conduit or trunking)	
		i		٠	•	0.38	0.43	0.53	0.61	0.74	3	0 91	1.21	1.72	z	3			ethods lin nking)	
0.079	0.092	0.115	0.140	0.170	0.21	0.26	0.32	0.43	0.52	0.65	0.02	0.82	1.12	1.65	٦			Ca		2 cable
0155	0.155	0.160	0.160	0.165	0.165	0.170	0.170	0.175	0.175	0.180	4.100	0 185	0.185	0.190	×	(mV/A/m)	4	Cables touching	Refer (clipped	2 cables, single-phase AC
0 17	0.18	0.19	0.21	0.23	0.27	0.31	0.36	0.46	0.55	0.67	0.04	0 84	1.14	1.66	N	2		hing	ences N direct, o	phase A
0.073	0.087	0.110	0.135	0.165	0.21	0.26	0.32	0.42	0.52	0.65	0.02	0 87	1.12	1.65	-			13	References Methods C, F & G ipped direct, on tray or in free a	C
0 24	0.24	0.25	0.25	0.25	0.25	0.26	0.26	0.26	0.26	0.27	0	0 27	0.27	0.28	×	(mV/A/m)	ر.	Cables spaced*	References Methods C, F & G (clipped direct, on tray or in free air)	
025	0.26	0.27	0.28	0.30	0.33	0.36	0.41	0.49	0.58	0.70	0.57	0 94	1.15	1.68	N	ت		ed*	ח	
		(4)?	0.135	0.165	0.20	0.25	0.30	0.38	0.48	0.59	0	0.75	1.00	1.44	7	-			Refer (e	
c	٠	(167)	0.22	0.23	0.23	0.23	0.24	0.24	0.24	0.25	.0.	200	0.26	0.26	×	(mV/A/m)	6		Reference Methods A & B (enclosed in conduit or trunking)	
			0.26	0.28	0.31	0.34	0.38	0.45	0.54	0.64	0.17	0.70	1.04	1.46	8	۳			ethods in nking)	
0.070	0.082	0.100	0.120	0.150	0.180	0.22	0.28	0.36	0.45	0.57	9	071	0.97	1.44	7			Cables		
0135	0.135	0.135	0.140	0.140	0.145	0.145	0.150	0.150	0.155	0.155	0.100	0 1 60	0.160	0.165	×	(mV/A/m)	7	Cables touching, Trefoil	04	3 or 4
0150	0.160	0.170	0.185	0.20	0.23	0.27	0.32	0.39	0.47	0.59	6.00	0.73	0.98	1.45	z	1)		Trefoil	Ra (clipp	or 4 cables, three-phase AC
0.070	0.082	0.100	0.120	0.150	0.180	0.22	0.28	0.36	0.45	0.57	9	0 71	0.97	1.44	4	_		Cable	eference red direc	nree-pha
0.21	0.21	0.21	0.22	0.22	0.22	0.22	0.22	0.23	0.23	0.23	i	023	0.24	0.24	×	(mV/A/m)	8	Cables touching, Flat	Method	se AC
0 22	0.23	0.23	0.25	0.27	0.28	0.31	0.35	0.43	0.50	0.61	į	0.75	1.00	1.46	2	3		g, Flat	Reference Methods C, F & G (clipped direct, on tray or in free air)	
0.063	0.076	0.095	0.120	0.145	0.180	0.22	0.28	0.36	0.45	0.57		0.71	0.97	1.44	-			Cable	ee air)	
0.28	0.29	0.29	0.29	0.29	0.29	0.30	0.30	0.30	0.30	0.31	i.	15.0	0.31	0.32	×	(mV/A/m)	9	Cables spaced*, Flat		
0.29	0.30	0.30	0.31	0.32	0.34	0.37	0.41	0.47	0.54	0.64	1	0.78	1.02	1.48	N	0		, Flat		

73

TABLE 4J2A - Multicore 90 °C thermosetting insulated and thermoplastic sheathed cables, non-armoured (ALUMINIUM CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes)

Ambient temperature: 30 °C Conductor operating temperature: 90 °C

300	240	185	150	120	95	70	50	35	25	16	(mm²)	1	sectional	Conductor cross-
i		ī		•	175	145	115	96	78	60	8	2	1 two-core cable, single- phase AC or DC	Reference (enclosed i thermally insul
313	273	233	206	180	157	131	104	87	71	55	(A)	3	I three- or four-core cable, three- phase AC	Reference Method A (enclosed in conduit in thermally insulating wall etc.)
•	•	ı			210	175	138	1115	94	72	(A)	4	I two-core cable, single- phase AC or DC	Reference (enclosed in or in true
364	318	272	240	216	188	156	124	103	84	2	(A)	5	I three- or four-core cable, three-phase AC	Reference Method B (enclosed in conduit on a wall or in trunking etc.)
ı	,				241	198	154	126	101	84	(A)	6	I two-core cable, single- phase AC or DC	Reference (clippe
440	382	323	283	245	211	. 174	136	112	90	76	(A)	7	I three- or four-core cable, three- phase AC	Reference Method C (clipped direct)
٠	,	ŧ	•	,	257	211	164	135	108	91	(A)	00	I two-core cable, single- phase AC or DC	Referen (in free air cable cable horizont
471	409	347	304	263	227	187	146	120	97	77	(A)	9	I three- or four- core cable, three- phase AC	Reference Method E (in free air or on a perforated cable tray etc, horizontal or vertical)

TABLE 4J2B

VOLTAGE DROP (per ampere per metre): Conductor operating temperature: 90 °C

Conductor cross- sectional area	Two-core cable, DC	Two-co	re cable, single-p	shase AC	Three- or for	ur-core cable, the	ree-phase AC
1	2		3			4	
(mm²)	(mV/A/m)		(mV/A/m)			(mV/A/m)	
16	4.8		4.8			4.2	
9	1	r	x	z	r	x	z
25	3.1	3.1	0.165	3.1	2.7	0.140	2.7
35	2.2	2.2	0.160	2.2	1.90	0.140	1.95
50	1.60	1.65	0.160	1.65	1.40	0.135	1.45
70	1.10	1.10	0.155	1.15	0.96	0.135	0.97
95	0.82	0.82	0.150	0.84	0.71	0.130	0.72
120	- 1	4		_	0.56	0.130	0.58
150	-	-		-	0.45	0.130	0.47
185	-		•	-	0.37	0.130	0.39
240		-		-	0.28	0.125	0.31
300		-	-	-	0.23	0.125	0.26

TABLE 4J3A – Single-core armoured 90 °C thermosetting insulated cables (non-magnetic armour) ALUMINIUM CONDUCTOR

Ambient temperature: 30 °C Conductor operating temperature: 90 °C

CURRENT-CARRYING CAPACITY (amperes):	CURRENT-CA	ARRYING CAPAC	CITY (amperes):
--------------------------------------	------------	---------------	-----------------

		Method C d direct)			(in free air		erence Met ated cable	hod F tray, horizonta	l or vertica	1)	eries d
Conductor	Touc	hing		Touching			Sp	aced by one c	able diame	ter	
cross- sectional	2 cables, single-	3 or 4 cables,	2 cables, single-	3 cables, three-	3 cables, three-	2 cables	s, DC	2 cab single-ph	NO SE	3 or 4 c three-ph	
area	phase AC or DC flat	three- phase AC flat	phase AC or DC flat	phase AC flat	phase AC trefoil	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
1	2	3	4	- 5	6	7	8	9	10	11	12
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
50	179	165	192	176	162	216	197	212	199	215	192
. 70	228	209	244	222	207	275	-253	269	254	270	244
95	276	252	294	267	252	332	307	328	310	324	296
120	320	291	340	308	292	384	357	378	358	372	343
150	368	333	390	352	337	441	411	429	409	424	394
185	419	378	444	400	391	511	480	490	467	477	447
240	494	443	521	468	465	605	572	576	549	554	523
300	568	508	597	536	540	701	666	654	624	626	595
380	655	573	688	608	625	812	780	735	704	693	649
480	747	642	786	685	714	942	906	825	790	765	717
600	836	706	880	757	801	1076	1036	909	872	832	780
740	934	764	988	824	897	1250	1205	989	950	890	835
960	1056	838	1121	911	1014	1488	1435	1094	1052	970	911
1200	1163	903	1236	990	1118	1715	1658	1187	1141	1043	980

TABLE 4J3B

· Conductor operating temperature: 90 °C

VOLTAGE DROP (per ampere per metre):

cross-	sectional	area	-	(mm²)		50	70	95	120	150	185	240	300	380	480	600	740	960	1200
2 cables,	DC		2	(mV/		1.60	1.10	0.82	0.66	0.52	0.42	0.32	0.26	0.21	0.160	0.130	0.105	0.080	0.064
					п	1.60	1.10	0.83	0.66	0.53	0.43	0.34	0.27	0.23	0.185	0.160	0.140	0.120	0.105
		touching	3	(mV/A/m)	×	0.22	0.21	0.20	0.20	0.195	0.190	0.185	0.185	0.180	0.175	0.175	0.170	0.160	0.160
	2 cables, sin				2	1.60	1.15	0.85	0.69	0.57	0.47	0.39	0.33	0.29	0.25	0.24	0.22	0.20	0.190
	2 cables, single-phase AC				7	1.60	1.10	0.85	0.69	0.56	0.46	0.37	0.30	0.26	0.23	0.20	0.190	0.170	0.155
	C	spaced*	4	(mV/A/m)	×	0.30	0.29	0.29	0.28	0.28	0.27	0.27	0.26	0.25	0.25	0.24	0.22	0.21	0.20
					N	1.60	1.15	0.90	0.74	0.62	0.54	0.45	0.40	0.36	0.34	0.31	0.29	0.27	0.25
(clipped d		n tr			-	1.40	0.96	0.71	0.57	0.46	0.38	0.29	024	0.195	0.160	0.135	0.120	0.105	0.093
sed direct, on tray or in fre		trefoil and touching	5	4 (mV/A/m)	×	0.185	0.180	0.175	0.170	0.170	0.165	0.160	0.160	0.155	0.155	0.150	0.145	0.140	0.135
(clipped direct, on tray or in free air)		hing		٥	Z	1.40	0.98	0.74	0.60	0.49	0.41	0.34	0.29	0.25	0.22	0.20	0.190	0.175	0.165
	3 or 4 cabl	fle			٦	1.40	0.97	0.74	0.60	0.49	0.40	0.32	0.26	0.23	0.20	0.175	0.165	0.150	0.140
	les, three-phase AC	flat and touching	6	(mV/A/m)	×	0.26	0.25	0.25	0.24	0.24	0.24	0.23	0.23	0.22	0.21	0.21	0.195	0.180	0.175
	ase AC	gm			Z	1.40	1.00	0.78	0.64	0.54	0.47	0.39	0.34	0.32	0.29	0.27	0.26	0.24	0.22
		fi.			٦	1.35	0.99	0.76	0.63	0.52	0.44	0.35	0.29	0.27	0.24	0.22	0.21	0.195	0.180
		flat and spaced*	7	(mV/A/m)	×	0.34	0.33	0.32	0.31	0.30	0.30	0.29	0.29	0.27	0.26	0.25	0.22	0.195	0.185
		*b			N	1.40	1.05	0.83	0.70	0.60	0.53	0.46	0.41	0.38	0.35	0.33	0.30	0.28	0.26

77

TABLE 4J4A – Multicore armoured 90 °C thermosetting insulated cables (ALUMINIUM CONDUCTORS)

Air Ambient temperature: 30 °C Ground Ambient temperate: 20 °C Conductor operating temperature: 90 °C

CURRENT-CARRYING CAPACITY (amperes):

Conductor cross- sectional area		Method C d direct)	(in free air or on	Method E a perforated cable ntal or vertical)	(direct in ground	Method D d or in ducting in ound buildings)
	1 two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three- phase AC	1 two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three- phase AC	1 two-core cable, single-phase AC or DC	1 three- or 1 four- core cable, three- phase AC
1	2	3	4	5	6	7
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)
16	82	71	85	74	71	59
25	108	92	112	98	90	75
35	132	113	138	120	108	90
50	159	137	166	145	128	106
70	201	174	211	185	158	130
95	242	214	254	224	186	154
120		249	ı s	264		174
150	-	284		305		197
185		328		350		220
240	-	386		418	-	253
300	-	441		488		286

TABLE 4J4B

.VOLTAGE DROP (per ampere per metre): Conductor operating temperature: 90 °C Conductor Three- or four-core cable, Two-core Two-core cable, cable, DC three-phase AC crosssingle-phase AC sectional area 2 3 4 (mm2) (mV/A/m) (mV/A/m) (mV/A/m) 16 4.8 4.8 4.2 X X Z 25 3.1 3.1 0.165 3.1 2.7 0.140 2.7 2.2 35 2.2 0.160 2.2 1.90 0.140 1.95 50 0.160 0.135 1.45 1.60 1.65 1.65 1.40 70 1.10 1.10 0.155 1.15 0.96 0.135 0.97 95 0.82 0.82 0.150 0.84 0.71 0.130 0.72 120 0.56 0.130 0.58 150 0.45 0.130 0.47 185 0.130 0.39 0.37 240 0.125 0.28 0.31 300 0.23 0.125 0.26

Table 4F1A 60°C thermosetting insulated flexible cables with sheath, non-armoured (COPPER CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes): Ambient temperature: 30 °C

Conductor operating temperature: 60 °C

Conductor cross-	Single-phase AC or DC	Three-phase AC	Single-phase AC or DC
sectional area	1 two-core cable, with or without protective conductor	I three-core, four- core or five-core cable	2 single-core cables touching
1	2	3	4
(mm²)	(A)	(A).	(A)
-4	30	26	-
6	39	34	
10	51	47	-
16	73	63	
25	97	83	
35	÷	102	140
50		124	175
70		158	216
95		192	258
120	1 - 1	222	302
150		255	347
185	-	291	394
240		343	471
300	-	394	541
400	- 1	=	644
500		*	738
630	-	-	861

VOLTAGE DROP (per ampere per metre):

TABLE 4F1B

Conductor operating temperature: 60 °C

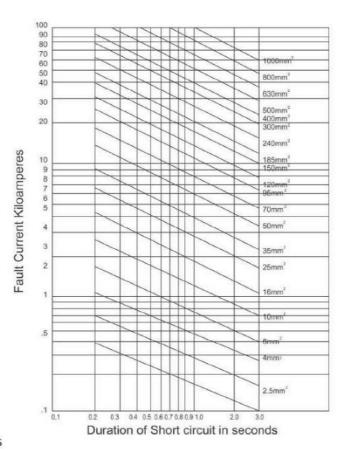
	500	400	300	240	185	150	120	95	70	50	35	25		16	10	6	4	(mm²)	-	cross- sectional area	Conductor
	,			,				_	1	i	r	1.80	_	2.9	4.6	7.8	12	(mV/A/m)	2	Two-core cable, DC	
•	•	•		٠		•		1	•	٠	i.	1.80	7							Two-core	
,				1			r			•	ı	0.175	×	2.9	4.6	7.8	12	(mV/A/m)	3	Two-core cable, single-phase AC	
	*					,	ı	4				1.85	N							hase AC	
		,	0.135	0.170	0.22	0.27	0.33	0.42	0.57	0.83	1.10	1.55	7							I th	
			0.125	0.130	0.130	0.130	0.135	0.135	0.140	0.145	0.150	0.150	×	2.5	4.0	6.7	10	(mV/A/m)	4	I three-core, four-core or five-core cable, three-phase AC	
		•	0.185	0.21	0.26	0.30	0.36	0.44	0.58	0.84	1.15	1.55	z							hase AC	
0.068	0.090	0.115	0.150	0.190	0.25	0.31	0.38	0.49	0.64	0.91	1.31			9			*	(mV/A/m)	5	DC	
0.079	0.099	0.120	0.155	0.195	0.25	0.31	0.38	0.49	0.64	0.91	1.31		٦	11		1					2 single-core
0.170	0.170	0.175	0.180	0.185	0.190	0.190	0.190	0.195	0.20	0.21	0.21	•	×	i,	•		ï	(mV/A/m)	6	Single-phase AC*	2 single-core cables, touching
0.185	0.20	0.21	0.24	0.27	0.32	0.36	0.43	0.53	0.67	0.93	1.32	ì	z								277

Table 4F2A 90 °C and 180 °C thermosetting insulated flexible cables with sheath, non-armoured (COPPER CONDUCTORS)

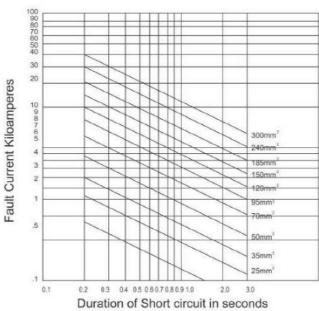
CURRENT-CARRYING CAPACITY (amperes): Ambient temperature: 30 °C Conductor operating temperature: 90 °C

Conductor cross- sectional area	Single-phase AC or DC	Three-phase AC	Single-phase AC or DC
	1 two-core cable, with or without protective conductor	1 three-core, four-core or five- core cable	2 single-core cables touching
1	2	3	4
(mm²)	(A)	(A)	(A)
4	42	37	-
6	55	49	
10	76	66	-
16	103	89	
25	136	119	
35	-	146	200
50	-	177	250
70		225	310
95	-	273	369
120	1 - 1	316	432
150	-	363	497
185		414	564
240		487	673
300	- 1	560	773
400	-		924
500			1062
630	_	-	1242

VOLTAGE DROP (per ampere per metre):


TABLE 4F2B

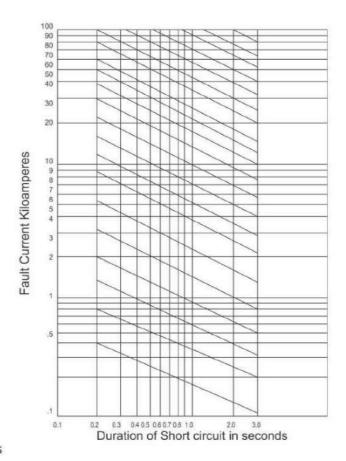
								2 single-core cables touching	2 single-core cables touching	uching
Conductor cross- sectional area	I two-core or 2 single-core cables, DC		Two-core cable, single-phase AC		I thre	three-core, four-core or five-core cable, three-phase AC	ore or	S:	Single-phase AC*	*
-	2		ω			4			5	
(mm²)	(mV/A/m)		(mV/A/m)			(mV/A/m)			(mV/A/m)	
4	13.2		13.2			11.1		şe i		
6	8.5		8.5			7.4			٠	
10	5.1		5.1			4.4				
16	3.2		3.2			2.7				
		п	×	N	-	×	z	ч	×	Z
25	2.03	2.03	0.175	2.04	1.73	0.15	1.73	ï		ı
35	1,42	i.			1.22	0.15	1.23	1.44	0.21	1.46
50	1.00	r	•	i)	0.91	0.145	0.93	1.00	0.21	1.02
70	0.71	1			0.62	0.14	0.64	0.71	0.20	0.73
95	0.54		,		0.47	0.135	0.49	0.54	0.195	0.57
120	0.42				0.37	0.135	0.39	0.42	0.190	0.46
150	0.34	1			0.29	0.130	0.32	0.34	0.190	0.39
185	0.27	E			0.24	0.130	0.27	0.27	0.190	0.33
240	0.21	ī		•	0.188	0.130	0.23	0.21	0.185	0.28
300	0.167	4			0.147	0.125	0.195	0.173	0.180	0.25
400	0.127		•	,	,	•	٠	0.132	0.175	0.22
500	0.100	r			•			0.107	0.170	0.20
630	0.074		ě.		10			0.085	0 170	0 100


Short Circuit Ratings

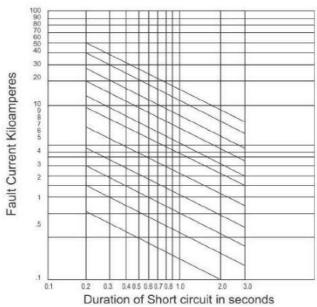
PVC Insulated Cables

Copper Conductors

Aluminum Conductors



.



XLPE Insulated Cables

Copper Conductors

Aluminum Conductors

85

Correction Factors

TABLE 4B1 - Rating factors (Ca) for ambient air temperatures other than 30 C

	Insu	lation
Ambient temperature ^a °C	70 °C thermoplastic (PVC)	90 °C thermosetting
25	1.03	1.02
30	1.00	1.00
35	0.94	0.96
40	0.87	0.91
45	0.79	0.87
50	0.71	0.82
55	0.61	0.76
60	0.50	0.71
65		0.65
70	-	0.58
75	-	0.50
80	-	0.41
85	-	_
90	_	-
95	-	- '

TABLE 4B2 - Rating factors (Ca) for ambient ground temperatures other than 20 °C

Ground	Insula	tion
temperature °C	70 °C (PVC) thermoplastic	90 °C (XLPE thermosetting
10	1.10	1.07
15	1.05	1.04
20	1.00	1.00
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.80
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	-	0.60
70	-	0.53
75		0.46
80		0.38

TABLE 4B3 – Rating factors (C_s) for cables buried direct in the ground or in an underground conduit system to BS EN 50086-2-4 for soil thermal resistivities other than 2.5 K.m/W to be applied to the current-carrying capacities for Reference Method D

Thermal resistivity, K.m/W	0.5	0.8	1	1.2	1.5	2	2.5	3
Rating factor for cables in buried ducts	1.28	1.20	1.18	1.13	1.1	1.05	1	0.96
Rating factor for direct buried cables	1.88	1.62	1.5	1.40	1.28	1.12	1	0.90

TABLE 4B5 - Rating factors for cables having more than 4 loaded cores

Number of loaded cores .	5	6	7	10	12	14	19
Rating factor	0.72	0.67	0.63	0.56	0.53	0.51	0.45
Number of loaded cores	24	27	30	37	44	46	48
Rating factor	0.42	0.40	0.39	0.36	0.34	0.33	0.33

TABLE 4C1 – Rating factors for one circuit or one multicore cable or for a group of circuits, or a group of multicore cables, to be used with current-carrying capacities of Tables 4D1A to 4J4A

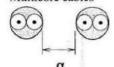

				N	umbe	r of ci	rcuits	or mu	lticor	e cabl	es			To be used with
Item	Arrangement (cables touching)	1	2	3	4	5	6	7	8	9	12	16	20	current-carrying capacities, Reference Method
1.	Bunched in air, on a surface, embedded or enclosed	1.00	0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.45	0.41	0.38	A to F
2.	Single layer on wall or floor	1.00	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.70	0.70	0.70	0.70	С
3.	Single layer multicore on a perforated horizontal or vertical cable tray system	1.00	0.88	0.82	0.77	0.75	0.73	0.73	0.72	0.72	0.72	0.72	0.72	E
4.	Single layer multicore on cable ladder system or cleats etc.	1.00	0.87	0.82	0.80	0.80	0.79	0.79	0.78	0.78	0.78	0.78	0.78	,

TABLE 4C2 – Rating factors for more than one circuit, cables buried directly in the ground Reference Method D in Tables 4D4A to 4J4A multicore cables

Number of		Cable-to	-cable clearan	ice (a)	
Number of circuits	Nil (cables touching)	One cable diameter	0.125 m	0.25 m	0.5 m
2	0.75	0.80	0.85	0.90	0.90
3	0.65	0.70	0.75	0.80	0.85
4	0.60	0.60	0.70	0.75	0.80
5	0.55	0.55	0.65	0.70	0.80
6	0.50	0.55	0.60	0.70	0.80

Multicore cables

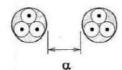
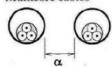



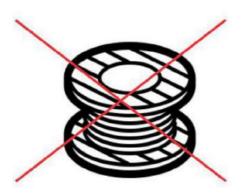
TABLE 4C3 – Rating factors for more than one circuit, single cables in ducts buried in the ground Reference Method D in Tables 4D4A to 4J4A (Multicore cables in single-way ducts)

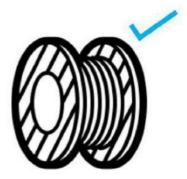
Number of ducts		Duct-to-duct	clearance (α)	
	Nil (ducts touching)	0.25 m	0.5 m	1.0 m
2	0.85	0.90	0.95	0.95
3	0.75	0.85	0.90	0.95
4	0.70	0.80	0.85	0.90
5	0.65	0.80	0.85	0.90
6	0.60	0.80	0.80	0.90

Multicore cables

Handling & Storage

Handling (Unloading at site):


While unloading the cables certain precautions are to be taken to ensure the safety of the cables.


- 1. Cable drums should not be dropped or thrown from trucks during unloading operations as the shock may cause serious damage to cable layers. A crane or load lifter should be used for unloading cable drums. If the crane is not available, a suitable ramp should be prepared. The cable drum should be rolled over the ramp by means of ropes and winches. Additionally a sand bed at the foot of the ramp may be prepared to brake the rolling the cable drum.
- 2. Cable should not be dragged along the earth surface.
- 3. Cable ends should always be sealed by means of suitable end caps to prevent moisturization ingress to cores and armour of cable.
- 4. Drums should always be rolled in direction of arrow marked on the drum.

Storage:

Cables should be stored in a dry covered place to prevent exposure to climatic conditions and wear and tear of wooden drums. All drums should be stored in such a manner as to leave sufficient space between them for air circulation. In no case should the drums be stored, "On the Flat", i.e., with flange horizontal.

Useful Information

TABLE A

COMPARISON BETWEEN STANDARD IMPERIAL AND THE NEAREST STANDARD METERIC SIZES OF CONDUCTORS FOR ELECTRIC CABLES.

Standard Imperial	Calculated	Inch converted To	Nearest Metric Stranded Size	No.and Nominal Diameter of wires
Stranding / wire Diameter inch	Area Inch ²	mm ²	mm ²	In circular conducto
3/.029"	0.0020	1.29	1.5	1/1.38
3/.036"	0.0030	1.94	1.5	1/1.38
7/.029"	0.0045	2.90	2.5	1/1.77
7/.036"	0.0070	4.52	4	7/0.85
7/.044"	0.010	6.45	6	7/1.04
7/.052"	0.0145	9.35	10	7/1.35
7/.064"	0.0225	14.52	16	7/1.70
19/.052"	0.04	25.81	25	7/2.14
19/.064"	0.06	38.71	35	7/2.52
19/.072"	0.075	48.39	50	19/1.78
19/.083"	0.10	64.52	70	19/2.14
37/.072"	0.45	96.77	95	19/2.52
37/.083"	0.20	129.0	120	37/2.03
37/.093"	0.25	161.3	150	37/2.25
37/.103"	0.30	193.6	185	37/2.52
61/.093"	0.40	258.1	240	61/2.25
61/.103"	0.50	322.6	300	61/2.52
91/.093"	0.60	387.1	400	61/2.85
91/.103"	0.75	483.9	500	61/3.20
127/.103"	1.0	645.2	630	127/2.52
127/.112"	1.25	806.4	800	127/2.85
127/.123"	1.50	967.7	1000	127/3.20

TABLE B

STANDARD COEFFICIENT OF CONVERSION

ITEMS	DESCRIPTION
1. LENGTH	1 mil = 0.0254 mm = 0.001 in.
ii LLiioiii	1 mm = 39.37 mils = 0.03937 in.
	1 cm = 0.3937 in. = 0.0328 ft.
	1 inch = 25.4 mm = 0.083 ft. = 0.0278 yd. = 2.54 cm.
	1 feet = 0.305 m = 0.333 vd.
	1 yard = 0.914 m = 91.44 cm.
	1 meter = 39.37 in. = 3.28 ft. = 1.094 yd.
	1 kilometer = 3,281 ft. = 1.094 yd. = 0.6213 mile
	1 mile = 5,280 ft. = 1.760 yd. = 1.609 m = 1.609 km.
2. AREA	1 MCM = 1000 CM (Circulator Mil) = 0.5067 mm ² = 1/1000 in ²
	1 CM = 0.0005067 mm ² = 0.0000007854 in ² = 0.7854 sq. mil.
	1 mm^2 = 1973 CM = 0.00155 in ² = 1,550 sq. Mil.
	1 in^2 = 1273240 CM = 645.1 mm ² = 0.0069 ft. ²
	$1 \text{ yd.}^2 = 1,296 \text{ in}^2 = 0.83613 \text{ m}^2$
	$1 \text{ m}^2 = 1,550 \text{ in}^2 = 10.7 \text{ ft.}^2 = 1.195 \text{ yd.}^2$
	1 km ² = 0.001562 mile ²
	1 mile ² = $27,880,000$ ft. ² = $3,098,000$ yd. ² = $2,590,000$ m ² = 2.59 km ²
TEN PARENTA VELLES	1 cm ³ = 0.061 in ³
3. VOLUME	$1 \text{ in}^3 = 16.39 \text{ cm}^3 = 0.0036 \text{ gal} = 0.0005787 \text{ ft.}^3$
	1 I. = 1,000 cm ³ = 61.023 in ³ = 0.2642 gal. = 0.03531 ft. ³
	1 gal. = 3,785 cm ² = 231 in ³ = 0.1337 ft. ³ = 0.004951 yd ³
	1 ft. ³ = 28.317 cm ³ = 1,728 in ³ = 28.32 i. = 7.48 gal.
	1 yd." = 46,656 in" = 0.7646 m ³
	1 m^3 = 61,023 in ³ = 35.31 ft. ³ = 1.308 yd. ³
/ WEIGHT	1 g. = 15.43 gr. = 0.03527 oz. = 0.002205 lb.
4. WEIGHT	1 oz. = 437.5 gr. = 28.35 g. = 0.0625 lb.
	1 lb. = 7,000 gr. = 453.6 g. = 16 oz. = 0.4536 kg.
	1 kg. = 15,432 gr. = 35.27 oz. = 2.205 lb.
	1 ton (short) = 2,000 lb. = 907.2 kg = 0.8928 ton (long)
	1 ton (long) = 2,240 lb. = 1.12 ton (short) = 1.016 ton (metric)
	1 ton (metric) = 2,204.62 lb.

TABLE C

(Imperial) to metric and metric to (imperial) (approximately)

(each group is listed in a alphabetic order)

COLUMN A x Multiplier = COLUMN B

COLUMN B x Reciprocal = COLUMN A

Example: Yards (Col A) x 0.914 (multiplier) = Metres (Col B)

Metres (Col B) x 1.093 (Reciprocal) = Yards (Col A)

CONVERSION FACTORS:

Column A	Column B	Multiplier	Reciproca
Length			
cm	In	0.3937	25.4
ft	m	0.3048	3.2808
in	mm	25.4	0.03937
in	cm	2.54	03937
km	mile	0.6214	0.6093
km	yd	1093.6	0.000914
m	in	39.37	0.0254
m	ft	3,2808	0.3048
m	yd	1.0936	0.9144
mile	km	1,6093	0.6214
mm	in	0.03937	25.4
yd	km	0.000914	1094.09
yd	m	0.9144	1,0936
Area			
cm ²		0.4770	0.4540
cm	in	0.1550	6.4516 10.7642
ft²	m ²		
in ²	Cm	6.4516	0.155
in"	mm ^e	645.16	0.0015
m"	ft	10.7639	0.0929
	yd ²	1.1960	0.8361
m*	m ^a	0.8361	1.1960
yd*			
Volume	in ²	0.0610	16.393
25004/2545-17-2-04444-4-V	m*	0.0283	35.3335
cm* (or : mililitre)	gal (British)	6.229	0.1605
ft ³	yai (British)	28.328	0.0353
ft ³	litre (dm³)	0.1605	
	ft ² m ³		6.2305
ft ^s	m	0.00455	219.78
gal (British)	litre (dm³)	4.546	0.2199
gal (British)	gal (USA)	1.2009	0.8327
gal (British)	litre (dm³) gai (USA) cm³	16.387	0.0610
gal (British)	gal (British)	0.219	4.566
in ³	gal (USA)	0.264	3.7878
dm ^a (or: litre)	ft ³	0.0353	28.328
	pint	1.7597	0.5682
dm³ (or: litre)	ft3	35.3147	0.0283
dm ² (or: litre)	yd*	1.3079	0.7645
dm ^a (or: litre)	gal (British)	220.0	0.00455
m"	litre dm'	1000.0	0.001
	m ^a	0.7645	1.3079
m"			
m ²			
m ^a			
d3			
yd²	kg	50.802	0.0197
	lb	2.2046	0.4536
Mass	cwt	0.0197	50.791
	ton (long)	0.000984	1016.05
cwt	t ton (rong)	0.001	1000.0
kg	gr	28.349	0.0352
kg	kg	0.4536	2.204
kg	t	0.00454	220.26
kg	÷	1.016	0.9842
oz	ka	1016.05	0.9842
lb	· · · ·	1016.05	0.000984
lb			
ton (long)			
ton (long)	lbf	2.2046	0.4535
		2.2040	
Force	N ton floors of	9.8065	0.1019
	ton (long) f	0.1003 404482	9.97
kfg or : kp	N		0.2248
kfg or : kp	kgf	0.4535	2.2046
kN	pdl	32.1740	0.0311
lbf	kgf	0.01409	70.9723
lbf	N	0.1382	7.2359
lbf	dyne	13825.5	0.0000723
pdi	t (metric) of Velocity	1.0160	0.9842
pdi	kn	9.9640	0.10036
pdl			
ton (long) f			
ton (long) f		0900000000	
	m/s	0.3048	3.2808
Velocity	m/s	0.00508	196.850
	m/min	0.3048	3.2808
ft/s	km/h	0.1828	54.7046
ft/min	mile/h	0.6213	1.6095
		1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	0.2777
ft/min	km/h km/h	3.6 1.6093	0.6213

TABLE D

ELECTRICAL FORMULAS

Electrical fomulas for determining ampere, Kilowatt, Kilovolt - ampere and horse power

	ALTERNA	ATING CURRENT
DIRECT CURRENT $A = \frac{KW \times 1000}{V}$	SINGLE PHASE $A = \frac{KW \times 1000}{V \times P.F.}$	THREE PHASE $A = \frac{KW \times 1000}{1.73 \times V \times P.F.}$
$A = \frac{KVA \times 1000}{V}$	$A = \frac{KVA \times 1000}{V}$	$A = \frac{KVA \times 1000}{1.73 \times V}$
$A = \frac{HP \times 746}{V \times (\%Eff.)}$	$A = \frac{HP \times 746}{V \times (\%Eff.) \times P.F.}$	$A = \frac{HP \times 746}{1.73 \times V \times (\%Eff.) \times P.F.}$
$KW = \frac{A \times V}{1000}$	$KW = \frac{A \times V \times P.F.}{1000}$	$KW = \frac{A \times V \times 1.73 \times P.F.}{1000}$
$KVA = \frac{A \times V}{1000}$	$KVA = \frac{A \times V}{1000}$	$KVA = \frac{A \times V \times 1.73}{1000}$
$HP = \frac{A \times V \times (\% \text{ Eff.})}{746}$	$HP = \frac{A \times V \times (\% \text{ Eff.}) \times P.F.}{746}$	HP = $\frac{A \times V \times 1.73 \times (\% \text{ Eff.}) \times P.}{746}$

APPROXIMATE MOTOR AMPERES PER TERMINAL:

220 Vac = 4 amperes per H.P.

3 phase 220 Vac = 2.5 amperes per H.P.

3 phase 380 Vac = 1.41 amperes per H.P.

3 phase 440 Vac = 1.25 amperes per H.P.

3 phase 550 Vac = 1 amperes per H.P.

WIRE GAUGES IN COMMON USE:

Gauge			Dia	meter	Cross-	Sectional	Area	Weight		
B.W.G.	A.W.G.	S.W.G.	mm.G.	Mil	mm	Cir. Mil	In ²	mm²	lb/1,000 ft	kg/km
5/0 - - - 4/0	- - 4/0	7/0 - 6/0 -	- 12 - -	500 472.4 464 460 454	12.700 12.000 11.786 11.684 11.532	250.000 223.162 215.296 211.600 206.100	.1964 .1753 .1691 .1662 .1619	126.7 113.1 109.1 107.2 104.4	756.9 675.6 651.7 640.5 624	1.126 1.005 969. 953 928.
3/0	= 3/0 =	5/0 _ 4/0 _	- - - 10	432 425 409.6 400 393.7	10.973 10.795 10.404 10.160 10.000	186.624 180.600 167.772 160.000 155.000	.1466 .1419 .1318 .1257 .1217	94.56 91.52 85.03 81.07 78.54	565 546.9 508 484.5 468	840.6 813.6 755.9 720.7 698.2
2/0 - - - 0	_ 2/0 _ _	3/0 - 2/0	- 9 -	380 372 364.8 354.3 348 340	9.652 9.440 9.266 9.000 8.839 8.636	144.400 138.384 133.079 125.528 121.104 155.600	.1134 .1087 .1045 .09859 .09512 .09079	73.17 70.12 67.42 63.62 61.36 58.58	437.1 418.9 402.7 380 366.6 349.9	650.5 623.4 599.4 565.6 545.5 520.8
= 1	0 - - 1	<u><u>0</u> <u>1</u></u>	- 8 -	324.9 324 315 300 389.3	8.250 8.230 8.000 7.629 7.348	105.560 104.976 99.225 90.000 83.694	.08291 .08245 .07793 .07069 .06573	53.49 53.19 50.27 45.60 42.41	319.5 317.8 300.3 272.4 253.3	475.5 472.8 446.9 405.4 377
2 	Ξ	<u>-</u>	- 7	284 276 275.6	7.214 7.010 7.000	80.660 76.176 75.955	.06335 .05983 .05966	40.87 39.60 38.48	244.2 230.6 229.9	363.3 343.2 342.1
3 - - 4 -	- 2 - - -	- - 3 -	- 6.5 - 6.0	259 257.6 255.9 252 238 236.2	6.579 6.544 6.500 6.401 6.045 6.000	67.080 66.358 65.485 63.504 65.640 55.790	.05269 .05212 .05143 .04988 .04449	33.99 33.63 22.18 28.70 28.27	203.1 200.9 189.2 192.2 171.5 168.9	302.2 299.0 295 286.1 255.1 251.1
- 5 -	- 3 - -	4 - - 5	_ _ 5.5 _	232 229.4 220 216.5 212	5.893 5.827 5.588 5.500 5.385	53.824 52.624 48.400 46.872 44.944	.04227 .04133 .03801 .03681 .03530	27.27 26.66 24.52 23.72 22.77	162.9 159.3 146.5 141.9	242.4 237 218 210.9 202.4
	4 - - 5	- - 6 -	- 5.0 -	204.3 203 196.9 192 181.9	5.189 5.156 5.000 4.877 4.621	41.738 41.210 38.770 36.864 33.088	.03278 .03237 .03045 .02895 .02599	21.15 20.88 19.63 18.68 16.77	126.3 124.8 117.4 111.6 100.2	188 185.6 174.5 166.3 149.1
7 - - 8	- - - 6	7	4.5 - - -	180 177.2 176 165 162	4.572 4.500 4.470 4.191 4.115	32.400 31.400 30.976 27.220 26.244	.02545 .02466 .02433 .02138 .02061	16.42 15.90 15.70 13.80 13.30	98.08 95.04 93.77 82.40 79.43	146 141.4 139.6 122.7 118.2

WIRE GAUGE IN COMMON USE CONTD.

Gauge		Dia	meter	Cross-S	Sectional	Area	Weig	ght		
B.W.G.	A.W.G.	S.W.G.	mm.G.	Mil	mm	Cir. Mil	In ²	mm²	lb/1,000 ft	kg/km
-	_	0	-	160	4.064	25.600	.02011	12.97	77.50	115.30
9	-	8 _	4.0	157.5	4.000	24.806	.01948	12.57	75.08	111.80
	177	_	_	148	3.759	21.900	.01720	11.10	66.29	98.68
_	7	9	_	144.3	3.665	20.822	.01635	10.55	63.01	93.7
100	-		-	144	3.658	20.736	.01629	10.52	62.78	93.5
-	_		3.5	137.8	3.500	18.989	.01491	9.621	57.46	85.53
10	= 8	Ξ	5.5	134	3.404	17.960	.01410	9.098	54.34	80.88
_		10	-	128.5	3.264	16.512	.01297	8.368	49.99	74.39
Ξ	-	10	3.2	128	3.251	16.384	.01287	8.302	49.60	73.81
-	_		0.2	126	3.200	15.876	.01247	8.042	48.06	71.49
11	9 <u>22</u> 9		_	120	3.048	14,400	.01131	7.297	43.59	64.87
11 	= 9	11	Ξ	116	2.946	13.456	.01057	6.818	40.74	60.61
_	9	=	2.9	114.4	2.906	13.087	.01028	6.632	39.62	58.96
12	_	=		114.2	2.900	13.042	.01024	6.605	39.47	58.72
12	0.000			109	2.769	11.880	.009331	6.020	35.96	53.52
				104	2.642	10.816	.008495	5.481	32.74	48.73
Ξ	=	12		102.4	2.600	10.486	.008246	5.309	31.78	47.29
_	10	=	2.6	101.9	2.588	10.384	.008156	5.262	31.43	46.78
13	=		Ξ	95	2.413	9.025	.007088	4.573	27.32	40.65
-	-	13	-	92	2.337	8.464	.006648	4.289	25.62	38.13
_	44	_	12450	90.74	2.305	8.234	.006467	4.172	24.92	37.09
14	11	Ξ	2.3	90.55	2.300	8.199	.006439	4.155	24.82	36.96
14	12		Ξ	83	2.108	6.889	.005411	3.491	20.85	31.04
=	12	14	=	80.81	2.053	6.530	.005129	3.309	19.77	29.42
N Late				80	2.032	6.400	.005027	3.243	19.37	28.83
-	-	15	2.0	78.74	2.000	6.200	.004869	3.142	18.77	27.93
15	13			72	1.829	5.184	.004072	2.627	18.46	27.36
=	13	Ξ		71.96	1.828	5.178	.004067	2.624	15.67	23.33
16	=	_	1.8	70.87	1.800	5.023	.003945	2.545	15.20	22.63
				65	1.651	4.225	.003318	2.141	12.79	19.03
Ξ	14	-	-	64.08 64	1.628 1.626	4.106 4.096	.003225	2.081	12.43	18.50
-	Ξ	16		62.99	1.626	3.968	.003217	2.075	12.40 12.01	18.45 17.88
17	_	=	1.6	200000000000000000000000000000000000000		100000000000000000000000000000000000000	(E.SE)(E.SE)(E.SE)(E.SE)(E.SE)			.5000.0327033
-	15	_	=	58	1.473	3.364	.002642	1.705	10.18	15.16
	S.AMI.			57.07	1.450	3.257	.002558	1.650	9.859	14.67
-	_	17	-	56	1.422	3.136	.002463	1.589	9.493	14.13
Ξ	Ξ	14	1.4	55.12		3.038	.002386	1.539	9.196	13.68
18	16	17 _ 18	Ξ	50.82	1.291	2.583	.002029	1.309	7.820	11.64
-	=	18	=	49 48	1.245 1.219	2.401 2.304	.001886	1.217 1.167	7.269 6.976	10.82 10.38
				47.24	1.200	2.232	.001753	1,131	6.756	10.06
		-	1.2	45.26	1.150	2.048	.001753	1.037	6.197	9.21
19	17	=		24	1.067	1.764	.001808	0.8938	5.388	7.94
	18	=	=	40.30	1.024	1.624	.001365	0.8226	4.914	7.31
_	-	19	_	40.30	1.024	1.600	.001275	0.8226	4.914	7.31
				40	1.010	1.000	.00115/	0.010/	4.043	7.20

WIRE GAUGE IN COMMON USE CONTD.

Gauge		Dia	meter	Cross	-Sectional	Area	Weight			
B.W.G.	A.W.G.	S.W.G.	mm.G.	Mil	Mm.	Cir. Mil	In²	mm²	lb/1,000 ft	kg/km
			1.0	39.37	1.000	1.550	.001217	0.7854	4.690	6.982
_	_	20	1.0	36	0.9144	1.296	.001018	0.6576	3,923	5.838
_	40	200000		35.89	0.9116	1,288	.001012	0.6529	3.900	5.804
	19	_	.90	35.43	0.9000	1.255	.0009857	0.6362	3.799	5.565
20	=	-	-	35	0.8890	1.225	.0009621	0.6207	3.708	5.518
				32	0.8128	1.024	.0008042	0.5189	3.099	4.613
21	20	21	-	31.96	0.8118	1.021	.0008019	0.5174	3.091	4.600
-	-	-	-	31.50	0.8000	992.3	.0007794	0.5027	3.004	4.469
Ξ	21	_	.80							
-	332	The same	-	28.46	0.7229	810	.0006362	0.4105	2.452	3.649
22	-	22	-	28	0.7112	784	.0006158	0.3973	2.373	3,532
-	=		.70	27.56	0.7000	759.6	.0005966	0.3848	2.299	3.421
Ξ		Ξ	.65	25.59	0.6500	654.8		0.3318	1.982	2.950
	22	-	17//2015	25.35	0.6438	642.6	.0005047	0.3256	1.945	2.895
23	_	23	Ξ	25	0.6350	625	.0004909	0.3167	1.892	5.816
-	-	25	-	24	0.6096	576	.0004524	0.2919	1.744	2.595
-	_	-	1722	23.62	0.6000	557.9	0001000	0.2827	1.689	2.513
-	23		.60	22.57	0.5733	509.4	.0004382	0.2581	1.542	2.295
24	100	24	=	22	0.5583	484	.0003801	0.2452	1.465	2.180
_	_		.55	21.65	0.5500	468.7	.0003681	0.2376	1.419	2.112
-	24	-	-	20.10	0.5106	404	.0003173	0.2047	1.223	1.820
25	_	25	_	20	0.5080	400	.0003142	0.2027	1.211	1.802
25	=		.50	19.69	0.5000	387.7	.0003045	0.1963	1.174	1.745
16		26	-	18	0.4572	324	.0002545	0.1642	0.9809	1.460
Ξ	25	Ξ	7-	17.90	0.4547	320.4	.0002516	0.1623	0.9697	1.443
-	10.553	-	.45	17.72	0.4500	314	.0002466	0.1590	0.9504	1.414
-	_	27		16.4	0.4166	269	.0002113	0.1363	0.1844	1.212
27	_		Ξ	16	0.4064	256	.0002011	0.1297	0.7750	1.153
_	26		-	15.94	0.4049	254.1	.0001996	0.1288	0.7693	1.145
Ξ		- - 28	.40	15.75	0.4000	248.1	.0001949	0.1257	0.7512	1.118
-	=	28	_	14.8	0.3759	219	.0001720	0.1110	0.6629	0.9868
-	27	_	-	14.20	0.3606	210.6	.0001583	0.1021	0.6101	0.9077
28	=	Ξ	-	14	0.3556	196	.0001539	0.09932	0.5931	0.8330
-	-	-	.35	13.78	0.3500	189.9	.0001491	0.9621	0.5746	0.8553
-	-	29	_	13.6	0.3454	185	.0001453	0.09372	0.5600	0.8332
29	i==	-	-	13	0.3302	169	.0001327	0.08563	0.5114	0.7613
_	28	=	-	12.64	0.3211	159.8	.0001255	0.08097	0.4837	0.7198
Ξ	-		.30	12.60	0.3200	158.8	.0001246	0.08042	0.7806	0.7149
		30		12.4	0.3150	153.8	.0001208	0.07791	0.4656	0.6926
30	=	31	Ξ	12	0.3048	144	.0001131	0.07297	0.4359	0.6487
				11.6	0.2946	134.6	.0001057	0.06818	0.4074	0.6061
	29	Ψ.	.29	11.42	0.2900	130.4	.0001024	0.06605	0.3947	0.5872
=		32	150	11.26	0.2859	126.8	.00009959	0.06425	0.3838	0.5712
=======================================	=	32	-	10.8	0.2743	116.6	.00009158	0.05913	0.3530	0.5257
-	30	_	26	10.24	0.2600	104.9	.00008239	0.05309	0.3175	0.4720
	((0.007))	1993	0.555	10.03	0.2546	100.6	.00007901	0.05097	0.3045	0.4531

WIRE GAUGE IN COMMON USE CONTD.

Gauge		Dia	meter	Cross	-Sectional	Area	Weight			
B.W.G.	A.W.G.	S.W.G.	mm.G.	Mil	Mm.	Cir. Mil	In ²	mm²	Ib/1,000 ft	kg/km
31	-		=	10	0.2540	100	.00007954	0.05067	0.3027	0.4505
	-	33		9.2	0.2337		.00006648	0.04289	0.2562	0.3813
-		34	.23	9.055	0.2300	84.64	.00006440	0.04155	0.2482	0.3694
32	-	=	-	9	0.2286	81.102	.00006362	0.04104	0.2452	0.3649
-	31	-	-	8.928	0.2238	79.71	.00006260	0.04039	0.2413	0.3591
_				8.4	0.2134	70.56	.00005542	0.03575	0.2136	0.3178
33	-	35	=	8	0.2032	64	.00005027	0.03243	0.1937	0.2883
33	32	Ξ	_		0.2019	65.20		0.03243		
_		_	10000000	7.950			.00004964		0.1913	0.2847
=	=	36	.20	7.874	0.2000	62 57.76	.00004869	0.03142	0.1877	0.2793
		- 00		7.6	0.1930	57.76	.00004536	0.02927	0.1748	0.2602
-	-	-	.18	7.087	0.1800	50.23	.00003945	0.02545	0.1520	0.2263
_	33	=	_	7.080	0.1798	50.13	.00003937	0.02540	0.1517	0.2258
34	=		_	7	0.1778	49	.00003848	0.02483	0.1483	0.2207
		37	Ξ	6.8	0.1727	46.24	.00003632	0.02343	0.1400	0.2083
=	34	-	-	6.305	0.1601	39.75	.00003122	0.02014	0.1203	0.1790
-	-	-	select:	6.299	0.1600	39.68	.00003116	0.02011	0.02011	0.1201
2	-	38	.16	6	0.1524	36	.00002827	0.01824	0.1090	0.1622
-	35	20	= =	5.615	0.1426	31.53	.00002476	0.01597	0.09543	0.1420
2	-		.14	5.512	0.1400	30.38	.00002476	0.01539	0.09343	0.1420
-	-	39		5.2	0.1321	27.04	.00002386	0.01539	0.08186	0.1368
						1223			10.000.000	
35	0.0	-	-	5.000	0.1270	25	.00001963	0.01267	0.07565	0.1126
33	36	40	7.	4.8	0.1219	23.04	.00001810	0.01167	0.06976	0.1037
=	=	- 10	.12	4.724	0.1200	22.32	.00001753	0.01131	0.06756	0.1006
=	37		=	4.453	0.1131	19.38	.00001557	0.01005	0.06001	0.0893
-	-	41		4.4	0.1118	19.36	.00001521	0.009810	0.05812	0.0872
Scopen/	-		500	4	0.1016	16.00	.00001257	0.008107	0.04845	0.0720
36	38	42	Z	3.965	0.1007	15.72	.00001235	0.007968	0.04760	0.0708
-	35			3.937	0.1000	15.50	.00001217	0.007854	0.04690	0.0698
=	-	42 - 43	.10	3.6	0.09114	12.96	.00001217	0.006567	0.03923	0.0583
_	39	-	Ξ	3.531	0.08969	12.47	.000001018	0.006319	0.03923	0.0561
	92/152					7555500			22922	200
		44	Ξ	3.2	0.08138	10.24	.000008042	0.005819	0.03099	0.0461
_	40	_	=	3.145	0.07987	9.891	.000007768	0.005012	0.02994	0.0445
Ξ	41	45	_	3.800	0.07113	7.842	.000006159	0.003973	0.02374	0.0353
-	42	-		2.494	0.06334	6.219	.000004884	0.003151	0.01882	0.0280
:=:	46	-	-	2.4	0.06096	5.760	.000004528	0.002929	0.01744	0.0259
		5695		2.221	0.05641	4.932	.000003873	0.002495	0.01498	0.0222
_	43	479	Ξ	2	0.05080	4.000	.000003142	0.002027	0.01211	0.0180
-		47		1.987	0.05023	3.911	.000003142	0.001982	0.01184	0.0176
Ξ	44	Ξ	.05	1.967	0.05000	3.877	.000003072		0.01174	0.0176
-	AF	_	_					0.001963		
-	45	48	-	1.761	0.04473	3.102 2.560	.000002436	0.001572 0.001297	0.009383	0.0139
	-	100			GR33998324E	1000000			A107605086	5505.00
120	46	-	-	1.568	0.03984	2.460	.000001931	0.001246	0.007446	0.0110
_	47	Ξ.	Ξ	1.397	0.03547	1.951	.000001532	0.0009884	0.005904	0.0087
Ξ	700000	20040		1.244	0.03159	1.547	.000001215	0.0007838	0.004683	0.0069
	48	49	7	1.2	0.03048	1.400	.000001131	0.0007297	0.004359	0.0064

TABLE F

WIRE GAUGE IN COMMON USE CONTD.

Gauge			Dia	Diameter Cross-Sectional Area		Area	Weight			
B.W.G.	A.W.G.	S.W.G.	mm.G.	Mil	Mm.	Cir. Mil	ln²	mm²	lb/1,000 ft	kg/km
-	49 - 50	- 50 -	-	0.108 1 0.986	0.02813 0.02540 0.02505	1.227 1.000 0.9728	.0000009635 .0000007854 .0000007641		0.003713 0.003027 0.002945	0.005526 0.004505 0.004382

Note: B.W.G. _ Birmingham Iron wire Gauge

A.W.G. _ American Wire Gauge
S.W.G. _ British Standard Wire Gauge

mm.G. _ Millimeter Gauge

SYMBOLS OF ELECTRICAL UNITS

ELECTRIC	AL UNIT	SYMBOL
CURRENT	(AMPERE)	A
VOLTAGE	(VOLT)	V (KV)
RESISTANCE	(OHM)	$\Omega(K\Omega, M\Omega)$
ELECTRICAL POWER	(WATT)	W (KW, MW.)
ELECTRICAL ENERGY	(WATT HOUR)	WH (KWH).
HORSE POWER		HP
POWER FACTOR	(cos ϕ)	P.F.
FREQUENCY	(HERTZ)	HZ
CAPACITANCE	(FARAD)	F (#F, PF.)
APPARENT POWER	(VOLT, AMPERE)	VA (KVA)
DIRECT CURRENT	(AMPERE)	I DC
ALTERNATING CURRENT	(AMPERE)	IAC
EFFICIENCY		Eff.
MAXIMUM VALUES		Em, Im
AVERAGE VALUES		Eav, lav
EFFECTIVE VALUES		E, I
INSTANTANEOUS		e, I

